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1. The area of square EBFG is 9 times the area of square ABCD, as shown in the diagram below.
The diagonal AC of ABCD has length 20. Compute the length of DG.

A B

CD

E

FG

20

Answer: 40

Solution:

Since ABCD and EBFG are squares whose areas are in the ratio 9 : 1, their sides are in the
ratio

√
9 : 1 = 3 : 1. Triangles △ACD and △BGF are both 45-45-90 triangles, so they are

similar with ratio CD : FG = 1 : 3. Thus, BG = 3AC = 3 · 20 = 60. Also, by symmetry
BD = AC = 20. We have BG = BD +DG = 60 = 20 +DG so DG = 40 .

2. Wen writes a positive integer W on the board. Repeatedly, she multiplies this integer by 2,
writes the result on the board, and erases the original number. At some point, the value written
on the board is 2024. Compute the smallest possible value of W .

Answer: 253

Solution 1: This problem is equivalent to dividing 2024 by 2 until it is no longer possible. We
have 2024

2 = 1012, then 1012
2 = 506, then 506

2 = 253. Since this is not even, we are done. The

smallest possible integer she could have started with is 253 .

Solution 2: We can write the prime factorization of 2024 = 23 · 11 · 23. To minimize W , we
should remove all factors of 2. We can pull out three factors of 2 and we will be left with
23 · 11 = 253 , which is the least possible number Wen could have started with.

3. Compute the third largest factor of the third largest factor of the third smallest positive integer
whose third largest factor has at least three factors. Recall that every positive integer is a factor
of itself.

Answer: 2

Solution: Let n be the third smallest positive integer whose third largest factor has at least
three factors. We want to compute the third largest factor of the third largest factor of n. First,
we need n to have a factor that has at least 3 factors. Some small numbers with at least 3
factors are 4 (1, 2, 4) and 6 (1, 2, 3, 6) and 8 (1, 2, 4, 8). Therefore the third largest factor of n
will probably be one of these numbers.

By counting up, we see that the smallest positive integer whose third largest factor has three
factors is 12, whose third largest factor is 4. The next candidate is 16, whose third largest factor
is also 4. Counting up a little more shows that 18 is the third smallest candidate, meaning
n = 18 with factors 1, 2, 3, 6, 9, 18, and third largest factor 6. Then the third largest factor of 6
is 2 .
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4. Jonathan is riding a unicycle. The unicycle wheel has a large outer circle, 6 small circles, and
a medium inner circle divided into 6 congruent sectors by 3 spokes, as shown in the diagram
below (diagram not to scale). The smallest circles have radius 1, the largest circle has radius 7.
All six small circles are tangent to the inner circle at an endpoint of a spoke, and tangent to the
outer circle. Compute the area of the shaded sector.

Answer: 25π
6

Solution:

Let the radius of the inner medium circle be r. Connecting the center of the large circle to a
point of tangency with a smaller circle, we have 7 = r + 2 · 1 so r = 5. The sectors divide the

area of the medium circle in 6, so the area of the shaded sector is 1
6

(
π · 52

)
=

25π

6
.

5. Compute the smallest three-digit positive integer with distinct nonzero digits satisfying the
property that it is not divisible by any of its digits. For example, 426 does not have this
property because it is divisible by 2 and 6.

Answer: 239

Solution: Let this number be x. We first note that x cannot include any 1 in its digits as 1
divides every three digit number. Therefore, because x has all distinct and nonzero digits, it
must be at least 234. We then try numbers starting from 234; we could try all numbers, but to
speed things up we note x cannot be even, otherwise it would be divisible by its first digit, 2.
Therefore, we try odd numbers:

• First, 235 is divisible by 5, one of its digits.

• Next, 237 is divisible by 3, one of its digits.

• Now, 239 is not divisible by 2, 3, or 9. Therefore, our answer is 239 .

6. Compute (x+ y)100 given(
x2 + 2xy + y2

y + z

)100

= 1,

(
y2 + 2yz + z2

x+ z

)50

= 8,

(
x2 + 2xz + z2

x+ y

)25

= 16.

Answer: 16

Solution:

Seeing expressions of the form a2 + 2ab+ b2 we are inspired to factor them as (a+ b)2 :(
(x+ y)2

y + z

)100

= 1,

(
(y + z)2

x+ z

)50

= 8,

(
(x+ z)2

x+ y

)25

= 16.

2



BMT 2024 Guts Round Solutions November 2, 2024

Considering exponent rules, we can expand these equations out to

(x+ y)200

(y + z)100
= 1,

(y + z)100

(x+ z)50
= 8,

(x+ z)50

(x+ y)25
= 16.

Taking the product of all of these equations, we see that the powers of (y + z) and (x+ z) will
cancel out and we will get

(x+ y)175 = 8 · 16 = 27

Finally, note that 175 = 25 · 7, so we can take a 7th root and get (x+ y)25 = 2, and then raising
this to the 4th power gives (x+ y)100 = 24 = 16 .

7. During his escape from Alcatraz Island, Aditya swims to San Francisco and sees a shark fin
above the water, indicated by the shaded area in the diagram below. The shark fin is formed by
a quarter circle of radius 3 with arc

>
AD cut by its overlap with a 45◦ sector of the circle centered

at C passing through A and B (on the two straight sides of the quarter circle). Compute the
area of the shark fin.

A

B CD

Answer: 9
2

Solution:
A

B CD E

Dropping the perpendicular from A to CD (intersecting at E), we get that the area of the shark

fin is equal to the area of the shape enclosed by CD,AC,
>
AD (call this ACD) minus the area

of the sector of the circle centered at C. The area of ACD is then equal to the sum of the area
of the quarter circle of radius 3 plus the area of the triangle with base CE and height AE. The
quarter circle has radius 3, so its area is π·32

4 = 9π
4 .

Next, we find the area of the circle sector with center C. Since the quarter circle has radius 3,
we know that AE = 3. Then, we have that △ACE is a right isosceles triangle with right angle
at E due to the 45◦ angle. This means AE = CE = 3, and AC = 3

√
2. So, the radius of the

circle sector centered at C is 3
√
2, giving the area of the sector as π·(3

√
2)2

8 = 9π
4 .

Thus, the area of the shaded region is

9π

4
+

3 · 3
2
− 9π

4
=

9

2
.

8. Isaac has a steel tube that is 2024 units long. He wants to cut this tube into C smaller pieces
such that no three pieces can be the sides of a triangle with positive area, and each piece has a
unique positive integer length. Compute the greatest possible value of C.
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Answer: 14

Solution: We start building a list of integers that satisfies this property, and stop when the
sum of our list exceeds 2024. The first three integers are 1, 2, 3. Then, to ensure that we can’t
form any triangles, we must prevent the triangle inequality from being satisfied: we must force
a+ b ≤ c for all ordered triples (a, b, c). To enforce this, the next number we add should be the
sum of the two largest elements of our list: in this case, 5. The sequence is then 1, 2, 3, 5, 8, 13, . . .
up until the 14th term, 610. The sum of those 14 elements is 1595, which leaves a remainder of
2024-1595 = 619, which is not enough to add the next term 987. Therefore, if we were to cut
the tube into 15 pieces 1, 2, 3, 5, . . . , 377, 610, 619, we can see that the final triple of integers does
satisfy the triangle inequality and would form a triangle with positive area. To prevent this, we
add the remaining length to the last integer 610 giving the best possible list of 14 integers.

9. Let log∗2(n) be the number of times we need to apply log2 to n to get a number less than 1. This
function grows very slowly, but a useful application is to extended exponentiation:

Let a ↑1 b = ab, and a ↑n+1 b = a ↑n (a ↑n (· · · (a ↑n a)))︸ ︷︷ ︸
b−1 ↑n’s

. For instance, 4 ↑2 3 = 4 ↑1 (4 ↑1 4).

Compute log∗2(2 ↑3 4).
Answer: 65537 OR 216 + 1

Solution: We’ll expand 2 ↑3 4 to get 2 ↑2 (2 ↑2 (2 ↑2 2)), which gives 2 ↑2 (2 ↑2 4), which is a
power tower of size 2 ↑2 4 = 65536.

One thing to notice is that log2(2
n) = n, so every successive logarithm will cut off a layer of

the tower. We need 2 ↑2 4 applications of log2 to cut the tower down to 1, and then one more
application to yield a number less than 1. Thus log∗2(2 ↑3 4) = 216 + 1 = 65537 .

10. Suppose N, a, and b are positive integers such that N = a3 + b3 − a2b− ab2. Given that N has
exactly 6 factors, compute the least possible value of N .

Answer: 32

Solution: For brevity, let f(a, b) = a3 + b3 − a2b − ab2. We can factor: a3 + b3 − a2b − ab2 =
(a + b)(a − b)2. Since 6 = 6 · 1 = 3 · 2, by the formula for the number of factors, f(a, b) must
either be a prime raised to the 5th power or in the form pq2 where p and q are distinct primes.

If f(a, b) is in the form pq2, then p = a + b and q = a − b. To minimize f(a, b) while keeping
both a and b positive integers, p and q should be the minimum primes with the same parity
with p > q. Therefore, p = 5 and q = 3 will give the minimum value of 45 for this form.

If f(a, b) = p5, it could only be less than 45 if p = 2 where f(a, b) = 32. Then (a+b)(a−b)2 = 25.
Since a and b are integers and a + b > a − b, we need a + b and a − b to be powers of 2 where
a+ b is a larger power of 2 than a− b. If a+ b = 2m and a− b = 2n, we need m+2n = 5 where
1 ≤ n ≤ m (to ensure that a + b and a − b have the same parity and the system has integer
solutions). The only possibility is m = 3, n = 1, which gives us a+ b = 8 and a− b = 2. Solving
for the system of equations gives a = 5 and b = 3, so N = 32 is achievable. Therefore, 32 is
the minimum value.

11. Let △ABC be a right triangle such that ∠B = 90◦. Points D and E are placed on AC such
that AB = AE and BC = DC. Given that AD = 2 and EC = 9, compute BD ·BE.

Answer: 720
√

2
17

Solution 1:

4



BMT 2024 Guts Round Solutions November 2, 2024

A

B
C

D

E

PF

G

Let DE = x, in right triangle △ABC, AB = 2+x, BC = 9+x, AC = 2+x+9 = 11+x. Using
Pythagorean Theorem, (2+x)2+(9+x)2 = (11+x)2, and we get x = ±6. Thus, DE = 6, right
triangle △ABC has side lengths 8, 15, 17. Drop an altitude from point B onto AC and label
this point P . Similarly, drop an altitude from D onto AB and label this point F , and then drop
an altitude from E onto BC and label this point G.

From here, we do some angle chasing. Let ∠EBC = α, since △ABC is a right triangle,
∠ABC = 90◦. Because △ABE is isosceles with AB = AE, ∠ABE = ∠AEB = 90◦ − α,
∠A = 2α. ∠ABE = 90◦ −α, ∠PBE = 90◦ − (90◦ − 2α)−α = α. Therefore, △BPE ∼ △BGE
by AA similarity, and further △BPE ∼= △BGE since they share the same hypotenuse. Then
∠ACB = 90◦ − 2α, with △CBD isosceles so we have ∠BDC = ∠DBC = 45◦ + α. Thus,
∠ABD = ∠DBP = 45◦ − α. By the same argument as before, we also see that △BFD ∼=
△BPD.

From here, we can compute all of the lengths we want. In right triangle △ABC, BF = BP =
8·15
17 = 120

17 by the fact that BP · AC = AB · BC. Since ∠AFD = 90◦, △AFD ∼ △ABC and
FD = AD · BC

AC = 2 · 1517 = 30
17 . This allows us to compute

PE = AB −AD −DP = AB −AD −DF = 8− 2− 30

17
=

72

17
.

By Pythagorean Theorem, BD =
√
DP 2 +BP 2 =

√(
30
17

)2
+
(
120
17

)2
= 30

√
17

17 . With the same

idea, BE =
√
PE2 +BP 2 =

√(
72
17

)2
+
(
120
17

)2
= 24

√
34

17 . Finally, we have BD · BE = 30
√
17

17 ·

24
√
34

17 =
720
√
2

17
.

Solution 2: Rotate △BAD counterclockwise around B until BA lies on BC, and scale it with a
factor of 15

8 to get a new triangle △BCD′. Then △BCD′ ∼ △BAD, BC
BA = 15

8 , CD′ = AD · 158 =
2 · 158 = 15

4 . Noticing that ∠BAC + ∠BCA = 90◦, ∠DCD′ = ∠DCB + ∠BCD′ = 90◦. Thus,
△DCD′ is a right triangle. Similarly, ∠DBD′ = 90◦. In right triangle△DBD′, BD

BD′ =
AB
CB = 8

15 .

And DD′ =
√
DC2 + CD′2 =

√
(6 + 9)2 + (154 )

2 = 15
√
17

4 . Thus, DB = DD′ · 8
17 = 30

√
17

17 . With

the same idea, we rotate△BEC, and we could get BE = 24
√
34

17 . Thus, BD·BE = 30
√
17

17 ·
24

√
34

17 =

720
√
2

17
.

12. Define an upright triangle to be a set of three distinct vertices on Pascal’s triangle, where two
vertices are on the same row and the third vertex is above both points and shares a diagonal with

5
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each of them. For example, the diagram below shows the first four rows of Pascal’s triangle, and
the three circled numbers are vertices of an upright triangle. Compute the sum of the vertices
over all upright triangles on the first 10 rows of Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

Answer: 9207

Solution: Each point on the first 10 rows of Pascal’s triangle appears in 9 upright Pascal
triangles (that are contained in the first 10 rows). To show this, for any point

(
a
b

)
where 0 ≤ b ≤

a ≤ 9, this point will be the top vertex of one triangle for each row that is beneath that vertex.
There are a total of 9− a triangles with a top vertex of

(
a
b

)
. This point will also be the bottom

left vertex of one triangle for each point of the Pascal’s triangle on the same row as
(
a
b

)
that is

right of it. There are a− b such triangles (with right vertices
(

a
b+1

)
,
(

a
b+2

)
, · · · ,

(
a
a

)
). This point

will also be the bottom right vertex of one triangle for each point of the Pascal’s triangle on the
same row as

(
a
b

)
that is left of it. There are b such triangles (with left vertices

(
a
0

)
,
(
a
1

)
, · · · ,

(
a

b−1

)
).

Therefore, the number of triangles that point
(
a
b

)
is part of is (9− a) + (a− b) + (b) = 9.

This means that the sum of the vertices over all upright equilateral triangles on the first 10
rows of the Pascal’s Triangles is 9 times the sum of the first 10 rows of the Pascal’s triangle.
We know that row i has the sum 2i (the relevant combinatorial identity can be proved by
binomial theorem on (1 + 1)i). By summing geometric series, the sum of the first 10 rows is
1 + 2 + 22 + · · ·+ 29 = 210 − 1, making our answer 9(210 − 1) = 9207 .

13. Let ⌊x⌋ denote the greatest integer less than or equal to x. Additionally, let {x} denote x−⌊x⌋.
For example, ⌊π⌋ = 3 and {π} = 0.1415 . . . . Compute the integer n such that there are exactly
2024 positive solutions x to the equation

x⌊x⌋
{x}

= n.

Answer: 2028

Solution: Treating the LHS as a function f(x) = x⌊x⌋
{x}

, we notice that the behavior of this
function is difficult to think about over a large interval, but over a smaller interval like [3, 4)
it may be easier. For x in this interval, we have ⌊x⌋ = 3, so our function over this interval is
equivalent to x3

x−3
. This is a continuous, increasing function of x, which allows us to reason

graphically about it. For x = 3 we have f(x) = 33
0
= 3, and for x just under 4 we have

f(x) ≈ 43
1
= 64. Thus, if 3 ≤ n < 64 there is exactly one solution f(x) = n on this interval,

and otherwise there is no solution. We can generalize this to the conclusion that there is exactly
one solution to f(x) = n for m ≤ x < m+ 1 if and only if m ≤ n < (m+ 1)m.

At this point, a reasonable approximation seems to be n = 2024 since the function grows very
rapidly and there exists a solution to f(x) = 2024 in the interval [2024, 2025) but no solution

6
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greater than 2025. However, the smallest solution occurs in the interval [5, 6), which we can
quickly see by approximating 54 < 2024 and 65 > 2024, therefore there are only 2024− 5 + 1 =
2020 solutions in the case n = 2024. Our next guess might then be n = 2028, since we need four
more solutions. We don’t “lose” solutions on the lower end because 65 is still much greater than
2028, but we get 4 more solutions on the upper end. In particular, there is exactly one solution
in the interval [i, i+ 1) for i = 5, 6, · · · , 2028. Thus, the answer is 2028 .

14. For each positive integer n, let s(n) be the sum of its digits and let p(n) be the product of its
digits. Compute the number of positive integers n ≤ 106 that satisfy s(n)− p(n) = 5.

Answer: 285

Solution: There are two cases to consider. For now, we’ll ignore the order of the digits: we
can account for it later. First, suppose that the digit 0 does not appear in n. Then, consider
the effect of adding any positive digit d to a number n. The effect on the sum of the digits is
to add d, while the effect on the product of the digits is to multiply by d. If we start with a
single digit number (which satisfies s(n) = p(n)), then we want to be able to add a digit so that
s(d) > p(d). However, notice that x+ d ≤ dx for any x, d ≥ 2. Therefore, we must add the digit
1 to increase s(n) relative to p(n) (the relative increase is just by 1). We can only have at most
a 6 digit number, so we will have to add 5 1s to any single digit for this to be possible with no
digits equal to 0.

This is both necessary and sufficient to satisfy s(n) − p(n) = 5, so now we just need to count
how many ways there are to do this. If the last digit is 1, then we’re just permuting 6 1s and
there’s only 1 way to do that. If the last digit is anywhere from 2 to 9, then we have 6 options of
where to put it and then fill everything else with 1s, which gives us 6(8) = 48 more possibilities,
totalling to 49.

Now, suppose we do have 0 occur as a digit in n. Then the sum of the digits must just be 5,
since the product also becomes 0. We can count the number of possibilities here with dots and
dividers: there are 5 stars with 6 digits to go in, which gives us a total of

(
10
5

)
= 252 more

numbers. However, we have to remove the cases where all the 0s occur as leading 0s, which
means that n doesn’t actually have any 0s in its digits. To do this, we can sum over the number
of leading 0s that occur. If there are k leading 0s, then we can ignore the first k dividers, and
give every remaining place a dot directly. This would give us 5 − k dividers and 5 − (6 − k)
= k − 1 dots, which has

(
4

k−1

)
ways of being organized. We see that k can range from 1 to 5

(since we must have at least 1 zero and can’t have all 6 be zero), which means we have the sum∑4
k=0

(
4
k

)
which is just 24 = 16. So, there are actually 252 − 16 = 236 possible n with at least

one digit being 0.

The total number of possible n is therefore 49 + 236 = 285 .

15. Arjun considers the parabola described by y = x2 − 2x+ 2 in the coordinate plane and chooses
some θ uniformly at random from the interval [0, 2π). He then rotates the parabola about its
vertex counterclockwise by θ and counts the number of times the resulting parabola intersects
the coordinate axes. The probability that there are exactly four intersections can be expressed
as π+arcsin(r)−arccos(r)

2π for some real number r. Compute r.

Answer:
√
5 − 2

Solution: A key observation is that after rotation, the parabola intersects the axes four times
if and only if it intersects each axis at two distinct points. Next, note that y = x2 − 2x + 2
is the translation of y = x2 by one unit up and one unit to the right in the coordinate plane.

7
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Rotating about the vertex of this parabola seems quite challenging, so it will likely be useful
to translate the entire problem back so the parabola has vertex (0,0). Now, we are instead
interested in rotating y = x2 and counting intersections with x = −1 or y = −1. Still, rotating
the parabola seems difficult. One idea is to use complex numbers to parameterize points on the
parabola, as modeling rotation with complex numbers is very convenient. The parabola in the
coordinate plane is the set of points (a, a2) for real numbers a, which is equivalent to a+ a2i for
real a. We can model rotation counterclockwise by θ as multiplication by the complex number
cos(θ)+i sin(θ), so the parabola after rotation by θ is the locus of z = (a+a2i)(cos(θ)+i sin(θ)) =
(a cos(θ)−a2 sin(θ))+ (a2 cos(θ)+a sin(θ))i as a varies over the reals. For this parabola to have
two intersections with each of the lines x = −1 and y = −1, the equations

Re(z) = a cos(θ)− a2 sin(θ) = −1

Im(z) = a2 cos(θ) + a sin(θ) = −1

must each have two distinct solutions. These are quadratic equations in a, which have distinct
real solutions when ∆ > 0. We can rearrange each equation and apply this principle to obtain
two inequalities in θ:

cos2(θ) > −4 sin(θ)

sin2(θ) > 4 cos(θ)

We can use the Pythagorean identity to rewrite each equation in terms of one function of θ:

1− sin2(θ) > −4 sin(θ)⇒ 0 > sin2(θ)− 4 sin(θ)− 1

1− cos2(θ) > 4 cos(θ)⇒ 0 > cos2(θ) + 4 cos(θ)− 1

We can apply any method of solving quadratic equations to solve these quadratic inequalities for
sin(θ) and cos(θ). As a result, we find that sin(θ) > 2−

√
5 and cos θ <

√
5− 2. The unit circle

is a useful tool for visualizing the interval of angles in [0, 2π). Some visual reasoning should yield
that the range of acceptable values of θ is (cos−1(

√
5− 2), π− sin−1(2−

√
5)). Thus, the desired

probability is π+sin−1(
√
5−2)−cos−1(

√
5−2)

2π and the answer is
√
5− 2 .

16. Let H be the orthocenter of obtuse triangle △ABC and D be the midpoint of AC. A line

through H perpendicular to
←→
DH intersects with

←→
AB and

←→
BC at points E and F , respectively.

Given that EH = 3 and HD = 5, compute the maximum possible area of triangle △DEF .

Answer: 15

Solution:

8
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A

B

C

D

E FH

P

X Y

We will show that regardless of the arrangement of △ABC (so long as it is obtuse), the area of
△DEF will always equal EH ·DH.

ExtendHD fromD to P such thatHP = 2HD, and connect segments AP , CP . Let the altitude

from C intersect
←→
AB at X, and the altitude from A intersect

←→
BC at Y . Then, since the diagonals

AC and HP bisect each other at D, PAHC is a parallelogram. Thus,
←→
CH ∥

←→
AP ,

←→
CP ∥

←→
AH. So

we have ∠PAE = ∠90◦ = ∠EHP , and similarly on the other side ∠PCF = ∠90◦ = ∠PHF .

So E, H, A, P are concyclic (on a circle with diameter EP ), and H, F , P , C are also concyclic
(on a circle with diameter FP ). Thus, by inscribed angle theorem we have that

∠EPH = ∠EAH,∠HPF = ∠HCF.

Then, since ∠CXA = ∠AY C = 90◦ and ∠AHX = ∠CHY because A, Y,H and C,X,H are
collinear (in that order, due to obtuseness), we have that △AHX ∼ △CHY and ∠XAH =
∠Y CH.

Since A,E,X are collinear and C,F, Y are collinear we have that ∠EAH = ∠HCF , meaning
that ∠EPH = ∠FPH: this makes the angle bisector of △EFP PH, which is also its altitude.
Thus, △EFP is isosceles and EH = FH. Finally, since DH ⊥ EF , we have the area of △DEF
equal to 1

2DH · (EH + FH) = DH · EH. Plugging in DH = 5, EH = 3 yields an area of 15 .

17. Let the power, p(n), of a positive integer n be the number of fractions of the form m
n that are

in simplest form over all positive integers m with 1 ≤ m ≤ n. (11 is in simplest form.) Let a

positive integer n be weak if p(n)
n ≤ p(k)

k for all 1 ≤ k < n. Compute the sum of all weak positive
integers less than 2024.

9
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Answer: 10147

Solution: The first step is to realize that p(n) = φ(n), Euler’s totient function. Then, we use
the fact that

φ(n)

n
=
∏
p|n

p− 1

p

which comes from the multiplicativity of φ(n)
n and the fact that φ(pk) = (p − 1)pk−1 as pk is

coprime to every number that is not a multiple of p. So, in order to minimize this quantity,
we want to maximize the number of distinct prime factors for small n. The sequence of weak
numbers is therefore 1, 2 = 1(2), 2(2), 3(2) = 1(2 ·3), 2(2 ·3), 3(2 ·3), 4(2 ·3), 5(2 ·3) = (2 ·3 ·5), 2(2 ·
3 ·5) · · · where the pattern is that a weak number is a (small) multiple of the product of the first
k prime numbers for some nonnegative integer k. The largest of these is (2 · 3 · 5 · 7) · 9 = 210 · 9,
since 210 · 10 = 2100 > 2024.

To sum these integers, we break into 5 sums:

1 +
2∑

i=1

2i+
4∑

i=1

6i+
6∑

i=1

30i+
9∑

i=1

210i

Using the identity
∑n

k=1 k = n(n+ 1)/2, we obtain the final answer

1 + 2(3) + 6(10) + 30(21) + 210(45) = 10147 .

18. Arthur has a four-sided die, of which all faces are initially labeled 1. Every second, Arthur rolls
the die and, if the outcome of the die is 1, then he changes the number on the top face to 2,
and otherwise, he changes the number to 1. Let the probability that the sum of the die rolls
is at some point k be pk. Let ⌊x⌋ denote the largest integer less than or equal to x, and let
{x} = x− ⌊x⌋. Compute {p1 + p2 + · · ·+ p2024}.
Answer: 7

8
− 1

21351

Solution: Let us calculate pi for a particular i. First, we actually consider the complement,
call this qi. In this event, we have that Arthur somehow gets to a sum of i− 1, then rolls a 2.

We construct and solve a state based recurrence relation. Let xi,j be the probability that after
i die rolls, there are j many 2s on Arthur’s die. Importantly, we are able to recover the current
sum of rolls from this information, which we will make use of later when calculating our answer.

Note that every roll flips the parity of the number of 2s on the die: in particular, this means
that after an odd number of rolls there must be an odd number of 2s on the die and the same
for evens. So, we have x2i,1 = x2i,3 = x2i+1,0 = x2i+1,2 = x2i+1,4 = 0. Since we know that∑4

j=0 xi,j = 1, we can conclude that x2i,2 = 3
4 by the fact that x2i−1,1 + x2i−1,3 = 1 and both

states are equally likely to move to a die with two 2s (turning a 1 to a 2 with probability 3/4 or
a 2 to a 1 with probability 3/4). The next observation is that x2i,0 − x2i,4 = 1

4i
. Conceptually,

this is because after two rolls, we “lose” 3/4 of the difference to the “center” (with two 2s) and
only 1/4 is reflected back to the edge (with zero or four 2s). This can be shown more rigorously
by induction as well. Finally, we note that x2i+1,1 − x2i+1,3 = x2i,0 − x2i,4, as a die with two 2s
is equally likely to have one or three 2s after one roll, so that state does not affect the difference
between those probabilities. Using the facts we have assembled, we can compute all of the
probabilities by solving systems of linear equations; for i > 0, we have

• x2i,1 = x2i,3 = x2i+1,0 = x2i+1,2 = x2i+1,4 = 0.

10
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• x2i,2 =
3
4 .

• x2i,0 =
1
8 + 1

2·4i .

• x2i,4 =
1
8 −

1
2·4i .

• x2i+1,1 =
1
2 + 1

2·4i .

• x2i+1,3 =
1
2 −

1
2·4i .

Now, we compute the probability of rolling a certain sum. Note that if after i rolls we have j
2s on the die, this means we have rolled j more 1s than we have 2s. Therefore, we’ve rolled i+j

2

1s and i−j
2 2s, giving a total sum of 3i−j

2 . Importantly, the difference between any two sums
taken from the same number of rolls is at most 2 (since 0 ≤ j ≤ 4), and each increase of i by
2 increases the sum by 3 (if j remains the same). So, we consider sums mod 3 (specifically,
3i− 1, 3i, 3i+ 1) and compute the probability of rolling a 2 in those situations by casework:

q3i =
1

2
x2i,2

q3i+1 = 0 · x2i,0 +
3

4
x2i+1,3

q3i+2 =
1

4
x2i+1,1 + 1 · x2i+2,4

Substituting our expressions and simplifying gives us q3i =
3
8 , q3i+1 = 3

4 ·
(
1
2 −

1
22i+1

)
= 3

8 −
3
4 ·

1
22i+1 , q3i+2 =

1
4 . Then, we compute

2024∑
i=1

qi =

(
674∑
i=0

q3i+1

)
+

(
674∑
i=0

q3i+2

)
+

(
673∑
i=0

q3i+3

)

=

(
674∑
i=0

3

8
+

3

4
· 1

22i+1

)
−

(
674∑
i=0

1

4

)
+

(
673∑
i=0

3

8

)

= −3

8
+

674∑
i=0

(
3

8
+

1

4
+

3

8

)
− 3

4

(
674∑
i=0

1

22i+1

)

= −3

8
+ 675− 3

4

(
2

3
−

∞∑
i=675

1

22i+1

)

= −3

8
+ 675− 3

4

(
2

3
− 2

3
· 1

22·675

)
= −3

8
+ 675−

(
1

2
− 1

2
· 1

21350

)
= −3

8
+ 675−

(
1

2
− 1

2
· 1

21350

)
= 675− 7

8
+

1

21351
.

Now, we have that
∑2024

i=1 pi = 2024−
∑2024

i=1 qi = (2024− 675)+ 7
8 −

1
21351

. Therefore, the answer

is
7

8
− 1

21351
.

11
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19. Let N21 be the answer to problem 21. Let b and d be real numbers such that the polynomial
P (x) = x4 − N21x

3 + bx2 − x + d has real roots p, q, r, s and pq = rs. Compute the greatest
possible integer value of P (N21).

Answer: 15

Solution: Using Vieta’s relations, we have the following equations relating p, q, r, and s to the
coefficients of the polynomial:

p+ q + r + s = N21

pq + pr + ps+ qr + qs+ rs = b

pqr + pqs+ prs+ qrs = 1

pqrs = d

In particular, we can do some nice manipulations of the second and fourth equations using the
fact that pq = rs:

pq + pr + ps+ qr + qs+ (pq) = p(q + r + s) + q(p+ r + s) = p(N21 − p) + q(N21 − q) = b

pqr + pqs+ p(pq) + q(pq) = pq(p+ q + r + s) = N21pq = 1 =⇒ pq =
1

N21

Since pq = rs = 1
N21

and d = pqrs, we have d = 1
N2

21
. At this point, we have determined exact

values for almost all the coefficients of our polynomial. The x4, x3, x, and constant coefficients
are all determined. Thus, to maximize P (N21) it suffices to maximize b because x2 ≥ 0 for all
real x (including N21, which is of particular interest to us!).

We have reduced the problem to maximizing b = p(N21−p)+q(N21−q) subject to the constraint
that pq = 1

N21
. Expanding our expression for b, we are equivalently maximizing −p2− q2 + (p+

q)(N21), or minimizing p2 + q2 − (p + q)(N21). This expression is suspiciously similar to the

expansion of (p+ q − N21
2 )2 = p2 + q2 − (p+ q)(N21) + 2pq +

N2
21
4 ; in fact, it is so similar that it

only differs by 2pq +
N2

21
4 which is a constant (within the confines of this problem)!

Clearly then, the values of p and q which maximize b will also minimize (p + q − N21
2 )2. This

is a square of a real number since p and q are real, so it takes its minimum value of 0 when

p+ q− N21
2 = 0. The expression for −b is less than (p+ q− N21

2 )2 by 2pq+
N2

21
4 , so the maximum

value of b is 2pq +
N2

21
4 = 2

N21
+

N2
21
4 .

We have determined that the polynomial which maximizes P (N21) is

x4 −N21x
3 +

(
2

N21
+

N2
21

4

)
x2 − x+

1

N2
21

and so the maximum possible value of P (N21) under the given constraints is 1
4N

4
21 +N21 +

1
N2

21
.

We have to round down to the nearest integer since the problem requests the greatest possible
integer value of P (N21). Thus, the answer to this problem is ⌊14N

4
21 +N21 +

1
N2

21
⌋.

Importantly, we are guaranteed that this value is actually attainable since b can be any real

number less than or equal to 2
N21

+
N2

21
4 .

Plugging in N21 =
560
209 gives the answer 15 .

12
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20. Let N19 be the answer to problem 19. Danielle picks a real number p uniformly at random from
[0, 1]. She then creates a magic coin that has probability p of landing on heads and probability
1−p of landing on tails when flipped. Compute the probability that Danielle lands heads exactly
N19 times in 5N19 flips of the coin.

Answer: 1
76

Solution: Let C be a random variable corresponding to selecting a value uniformly at random
from [0, 1]. The value of C represents the chosen probability p of flipping a heads on Danielle’s
magic coin. Then, let X1, X2, · · · , X5N19 be independent random variables also corresponding to
selecting a value uniformly at random from [0, 1]. Note that the probability P(Xi < C|C = p) = p
for any given Xi and fixed value p of C. So, we can consider the number of heads flipped to be
the number of random variables Xi1 , Xi2 , · · · , Xim that are less than p. We can then consider
the probability of flipping exactly N19 heads as the probability that the list C,X1, X2, · · · , X5N19

when sorted in ascending order has C as the N19+1st element in the list. However, since C and
all of the Xi are independent, identically distributed uniform random variables, by symmetry
it is equally likely for C to be the kth smallest element for any 1 ≤ k ≤ 5N19 + 1 in this list.
Therefore, the probability that k = N19 is exactly 1

5N19+1 .

Plugging in N19 = 15 yields the answer
1

76
.

21. Let N20 be the answer to problem 20. In triangle △ABC, the angle bisector of ∠B intersects
AC at D. The perpendicular bisector of BD intersects AB and BC at X and Y respectively.
The area of △BXY is 7

55 , AD = 1
4 , and DC = N20. Compute the area of △ABC.

Answer: 560
209

Solution:

A

B

C
D

X
YZ

[Diagram not to scale.]

Let BD and XY intersect at Z. Since ∠Y BZ = ∠XBZ and ∠XZB = ∠Y ZB = 90◦, we have
△XZB ∼ △Y ZB. Additionally, since ZB = ZB, we have △XZB ∼= △Y ZB.

Now connect X to D and Y to D and consider the triangles △XZD and △Y ZD. Due to
the perpendicular bisector, we have ZD = ZB and ∠XZD = ∠Y ZD = 90◦. We find that
there aren’t just two congruent triangles in this configuration, but actually four! In particular,
△XZB ∼= △Y ZB ∼= △XZD ∼= △Y ZD.

13
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As a result, we have BX = XD = DY = Y B, so BXDY is a rhombus and therefore a
parallelogram. Thus, XD||BC and DY ||AB, so △AXD ∼ △ABC ∼ △DY C.

Using similarity, we have
AX

AB
=

AD

DC
=

1
4

1
4 +N20

CY

CB
=

DC

AC
=

N20
1
4 +N20

The area of △ABC is given by 1
2 sin∠B ·BA ·BC, which we can rewrite as 1

2 sin∠B ·BX ·BY ·
AB
BX ·

BC
BY This is convenient because we have 1

2 sin∠B ·BX ·BY = [△BXY ], which is known to

us! Thus, the desired area is equivalent to [△BXY ] · AB
BX ·

BC
BY = 7

55 ·
1
4
+N20
1
4

·
1
4
+N20

N20
and we’re

done! The desired area is 7
55 ·

( 1
4
+N20)2

1
4
N20

.

Plugging in N20 =
1
76 gives the final answer,

560

209
.

By solving problems 19, 20, and 21 we find the following relationships between N19, N20, and
N21:

N19 =

⌊
N4

21

4
+N21 +

1

N2
21

⌋
N20 =

1

5N19 + 1

N21 =
7

55
·
(14 +N20)

2

1
4N20

Based on these relationships, we can make some crude observations and predictions about the
exact values of N19, N20, and N21. First, it is apparent that all the answers are nonnegative. In
addition, since N19 is a nonnegative integer, N20 is likely to be quite small. Even modest values
of N19 cause N20 to be much less than 1; for example, in the case N19 = 3, we’d have N20 =

1
16 .

Looking at the last equation, the observation that N20 is small becomes useful. We see that we
can expand as

N21 =
7

55
·

1
16 + 1

4N20 +N2
20

1
2N20

≈ 7

55
·

1
16 + 1

2N20

1
4N20

where the N2
20 term is likely to be so small compared to 1

16 as to be insignificant. The cases where
N2

20 is closer in magnitude to 1
16 such that this approximation introduces significant error are

those where N19 is small, really only N19 = 0, 1, 2, which can be easily checked and disregarded.

Thus, we have rewritten the last equation in a much more tractable form:

N21 ≈
7 + 56N20

220N20

Rearranging this and solving for N20 gives

14
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N20 ≈
7

220N21 − 56

which we can use to solve for N19 in terms of N21:

7

220N21 − 56
≈ N20 =

1

5N19 + 1
=⇒ N19 ≈

220N21

35
− 9

5

This can be used with the first equation to write an equation only in terms of N21. Note the
choice to solve in terms of this variable; if we had chosen another one, then we would have had

to deal with substitutions for N21 in
N4

21
4 +N21 +

1
N2

21
which would be very painful :) We have

the following:

44N21

7
− 9

5
≈
⌊
N4

21

4
+N21 +

1

N2
21

⌋
= N19

This looks very scary; it’s a quartic equation with extra complexity due to the floor function.
However, with a few tricks we can reasonably approximate the value of N21 such that this
equation holds. For starters, we’ll mostly do analysis of the magnitude of each side of the
equation to get reasonable bounds on the solutions, so we’ll ignore the floors.

Since
N4

21
4 grows very quickly with N21 we can immediately bound any solution above by 3; at

N21 = 3 the RHS of this equation is about 23, and the LHS is just above 17. Beyond this point,
the RHS is much much larger than the LHS. Additionally, plugging in N21 = 2 causes the LHS
to be greater than the RHS, so we know a solution to the equation exists for 2 < N21 < 3. To
get even more granular, we can try N21 = 2.5 and observe that the LHS is still greater than
the RHS (LHS is roughly 14, RHS is roughly 12), so a solution 2.5 < N21 < 3 must exist. As
we may realize, however, the most useful outcome of this analysis is not even the bound on N21

but instead the bound on N19. At our solution point we will have N19 ≈ RHS = LHS, which is
greater than 14 and less than 18.

N19 is an integer, so it equals 14, 15, or 16. These give N20 = 1
71 ,

1
76 ,

1
81 , respectively. Using

our approximation for N21 to minimize intermediate computations (we’ll have to use the exact
formula to extract the answer to problem 21, but we don’t really want to do this work more than
once!), we get N21 = 553

220 ,
588
220 ,

623
220 respectively. N21 = 553

220 is certainly too small by our previous
work since it’s extremely close to 2.5. 623

220 is too big; a good approximation for this number is 17
6

and plugging this into the first equation gives N19 ̸= 16, a contradiction. Thus, we must have
N21 ≈ 588

220 ≈
8
3 . We can easily verify that this works and therefore N19 = 15.

We do have to be a little careful; we assumed the desired solution to

44N21

7
− 9

5
≈
⌊
N4

21

4
+N21 +

1

N2
21

⌋
= N19

was near N21 = 2.5. However, seeing the 1
N2

21
term may make us (appropriately) concerned that

there is actually another solution where N21 is between 0 and 1. With a quick exploration, we
can bound this solution between 2

3 and 1 and see that this case implies N19 = 2 which is a case
we’ve already verified doesn’t work.
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22. Tetrahedron ABIH has points C on BH, D on AH, E on HI, F on AI, and G on BI such
that the squares BCEG and ADEF have side length 5. Quadrilaterals ABCD and ABGF
are isosceles trapezoids. Given that AB = 4

√
2 and CD = 3

√
2, compute the volume of solid

ABCDEFG.

Answer: 20
√
10

Solution: Notice that FGEI and DCHE are similar tetrahedron to ABHI. Thus CD
AB = 3

4 =
CH
BH , so the side lengths of DCHE are 3

4 the side lengths of ABHI. Since BCEG is a square,
we get that CE

CH = BC
CH = 1

3 . Since △IGE ∼ △ECH, we get 1
3 = GI

EG = GI
BG . This tells us that

the side lengths of FGEI are 1
4 the side lengths of ABHI.

A

B C

D

EF
G

H

I

We want to project point E down to plane ABCD to solve for the height of ABHI. Let’s use
the net for ABCDEFG to figure out where the projection of E lies.

E

G

F

A

B

D

C

E
F ∗

E∗

G′

E′

X

Y

Z

7√
2

3√
2

7√
2

When rotating the square ADE∗F ∗ around AD, notice that the projection of E∗ always lands

on
←−→
DE∗. Similarly, the projection of E′ down to the plane ABCD must lie on

←−→
CE′.

Thus, the projection of E onto the plane ABCD must lie on the intersection of
←−→
DE∗ and

←−→
CE′.

So, we extend CE′ and DE∗ to point X, which is the projection of E down to plane ABCD.

16
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To find the height EX, we draw altitudes XZ and CY . See that BY = AB−CD
2 = 1√

2
so

CY =
√
BC2 −BY 2 = 7√

2
.

Now, see that ∠XCZ ∼= ∠BCY since both have measure ∠BCD − 90◦. This means △BCY ∼
△XCZ. Thus, XZ = 3

7
√
2
. Use the right triangle △CZE to get EZ2 = CE2 − CZ2 = 41

2 .

Now, if we look in the solid ABCDEFG we can use right triangle △EXZ to get EX =√
EZ2 −XZ2 = 10

√
10

7 . To find the volume of DCHE, we see that the area of △CDH is
1
2CD ·HZ = 1

2(3
√
2)(3 · 7√

2
) = 63

2 . So, the volume of DCHE is 1
3 ·

63
2 ·

10
√
10

7 = 15
√
10 This is

(34)
3 = 27

64 the volume of ABHI but we want 1− (14)
3 − (34)

3 = 36
64 . Thus, our desired volume is

36
27 · 15

√
10 = 20

√
10 =

√
4000 = 20

√
10 .

23. Let X denote the set {−1, 0, 1, 2, 3, 4}, and let P(X) denote the set of all subsets of X. Compute
the number of functions f : P(X)→ X such that f(∅) = 0 and f(A∩B)+f(A∪B) = f(A)+f(B)
for any subsets A and B of X.

Answer: 966

Solution: For brevity, set n = 4. Call a function f special if and only if f(∅) = 0 and
f(A∩B) + f(A∪B) = f(A) + f(B). We classify all special functions. On one hand, let f be a
special function. Then for any subset A ⊆ X and element x ∈ X \A, we see that

f(A ∪ {x}) = f(∅) + f(A ∪ {x}) = f({x}) + f(A)

because f is special. Rearranging, we see that f(A∪ {x}) = f(A) + f({x}). Thus, an induction
on the number of elements of A implies that

f(A) =
∑
x∈A

f({x}).

And conversely, for any f defined as above, we can check that

f(A ∩B) + f(A ∪B) =
∑

x∈A∪B
f({x}) +

∑
x∈A∩B

f({x})

=
∑
x∈A

f({x}) +
∑
x∈B

f({x})

= f(A) + f(B).

The point is that f is completely determined by its values on singletons.

To compute the desired number of functions f , it remains to deal with the condition that
−1 ≤ f(A) ≤ n for any subset A ⊆ X. Notably, 0 ≤ f({x}) ≤ n. But the chief difficulty lies in
the fact that f({x}) may be nonpositive. For example, note

f(A) =
∑
x∈A

f({x})

is at least −1 for all subsets A ⊆ X if and only if f({x}) = −1 for at most one value of x. So
we might as well do casework.

• Suppose f({−1}) = −1. Then

f(A) =
∑
x∈A

f({x}) ≤
n∑

x=0

f({x}) = f(X \ {−1}),

17
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so it remains to check
∑n

x=0 f({x}) ≤ n. From here, the number of possible f is the the
number of ways to choose n+1 nonnegative integers to have sum at most n. This is equal
to the number of ways to choose n + 2 nonnegative integers with sum exactly n, which is(
2n+1
n

)
.

• Suppose f({x}) ≥ 0 for each x. Arguing as above, it remains to check
∑n

x=−1 f({x}) ≤ n,
so we are counting the number of ways to choose n + 2 nonnegative integers to have sum
at most n. Computing as above, this is

(
2n+2
n

)
.

Combining the above work, we total to

(n+ 2)

(
2n+ 1

n

)
+

(
2n+ 2

n

)
,

which is 6
(
9
4

)
+
(
10
4

)
= 966 .

24. A polynomial with integer coefficients that has a root of the form k cos
(
4π
7

)
for some positive

integer k is called simple if there are no polynomials of lesser degree with integer coefficents
sharing the same root. There exists a unique simple polynomial P (x) with leading coefficient 1
such that |P (3)| is minimized over all simple polynomials with leading coefficient 1. Compute
P (4).

Answer: 56

Solution: First, let z = e
4πi
7 . This is a root of z7 − 1 = (z − 1)(z6 + z5 + z4 + z3 + z2 + z + 1).

Since z ̸= 1, we must have z6 + z5 + z4 + z3 + z2 + z + 1 = 0. This is the minimal polynomial
of z over the rational numbers, and also notice that it is a cyclotomic polynomial. To achieve
minimal degree, we can divide this by z3. This gives:

z6 + z5 + z4 + z3 + z2 + z + 1

z3
= z3 + z2 + z+1+

1

z
+

1

z2
+

1

z3
= z3 +

1

z3
+ z2 +

1

z2
+ z+

1

z
+1.

We then have

z +
1

z
= e

4πi
7 + e−

4πi
7 = 2 cos

(
4π

7

)
.

Let x = z + 1
z . Notice that

z3 +
1

z3
=

(
z +

1

z

)3

− 3

(
z +

1

z

)
= x3 − 3x.

Similarly,

z2 +
1

z2
=

(
z +

1

z

)2

− 2 = x2 − 2.

Therefore, z3 + 1
z3

+ z2 + 1
z2

+ z + 1
z + 1 = (x3 − 3x) + (x2 − 2) + x+ 1 = x3 + x2 − 2x− 1 = 0.

In this case, we have shown there exists a minimal polynomial with k = 2 and degree 3.

Now, we claim P1(x1) = x31 + x21 − 2x1 − 1 is unique, and we will show this by contradiction.
Assume there exists Q(x1) with degree 3 such that k cos

(
4π
7

)
is a root of Q. Then the difference

between a monic polynomial with degree 3 and rational coefficients R(x1) and Q(x1) will be
R(x1) − Q(x1) = S(x1) for some polynomial S(x1) with degree less than 3 and non-integer
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coefficients. We have S(k cos
(
4π
7

)
) = 0, which means S(x1) has degree less than P (x1), which is

a contradiction to the fact that P1(x1) has minimal degree. Thus, P1(x1) is unique.

However, we need to ensure that |P (3)| is minimized. We can plug in 2x
k for x in the polynomial

P1(x1) because it give us a root of k cos
(
4π
7

)
as desired.

This gives

P1

(
2x

k

)
=

(
2x

k

)3

+

(
2x

k

)2

− 2

(
2x

k

)
− 1 = x3 +

kx2

2
− k2x

2
− k3

8

after transforming it back to a monic polynomial.

Since P1(x1) must have integer coefficients, clearly k is even. Therefore, if k = 2n for some integer
n we have P1(x1) = x31+nx21−2n2x1−n3, and more specifically, |P (3)| = |27+9n−6n2−n3|. We
look to find the minimum of |27+9n−6n2−n3| for n ∈ Z+. We know the cubic 27+9n−6n2−n3

goes to infinity on the left and negative infinity on the right, and a cubic can only change direction
twice. We see that

27 + 9(0)− 6(0)2 − (0)3 = 27

27 + 9(1)− 6(1)2 − (1)3 = 29

27 + 9(2)− 6(2)2 − (2)3 = −13
27 + 9(3)− 6(3)2 − (3)3 = −27

where the function decreases at some point before n = 0, increases after n = 0, and decreases
again after n = 1, meaning that it has already changed direction twice, and it must therefore
continue to decrease after n = 2. Thus, we conclude the absolute value of the cubic is minimized
on the positive integers at n = 2 for a value of 13. Therefore, we can plug in n = 2 to p(x1):
p(x1) = x31 + 2x21 − 8x1 − 8.

The desired polynomial is P (x) = x3 + 2x2 − 8x− 8, with P (4) = 43 + 2(4)2 − 8(4)− 8 = 56 .

25. The Fibonacci numbers Fn for integers n ≥ 1 are defined as follows: F1 = F2 = 1, and for n > 2,
Fn = Fn−1 + Fn−2. Kiran makes a list of all the distinct positive integers less than or equal to
106 that can be expressed as the sum of at most four distinct Fibonacci numbers. Compute the
length of Kiran’s list. Submit your answer as an integer E; if the correct answer is A, your score

for this question will be max

(
0, 25−

⌊√
|A−E|
4

⌋)
.

Answer: 17692

Solution: First, we want to count the number of Fibonacci numbers under 106. There’s a few
ways we could do this. One way is to compute forward to F16 = 977, and since the Fibonacci
sequence is roughly geometric, we expect that F16

F1
≈ F31

F16
and so F31 is roughly 106. Another

strategy is to compute all the way to F31 by hand, or to treat F16 as 1000 and then compute
forward with some loss of precision to speed up calculations. In general, we get that F30 is the
largest Fibonacci number less than 106 (with a value roughly around 8 · 105 if we compute more
precisely).

A naive method is to guess that we can choose any four of the first 30 Fibonacci numbers at
random and sum them to get a distinct integer, which would give a guess of

(
30
4

)
= 27405,

which will get only 1 point. However, we should also note that F1 = F2, so any instance where
we choose F1 and not F2 is the same as choosing F2 and not F1. Therefore, we can remove
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about a quarter of the possibilities (There are four subsets of {0, 1}, and we’re removing one for
double counting). This gives 3

4 ·
(
30
4

)
= 20653.75, which (when rounded to an integer) scores 12

points. Another improvement is realizing that F30 is close to 106, so we should not choose it
to guarantee that our sum is below 106. This gives 3

4 ·
(
29
4

)
= 17813.25, which (when rounded)

earns 23 points. We are getting somewhat “lucky” here, since we made a lot of simplifying
assumptions that happen to roughly cancel out to within 150 of the correct answer.

Another approach is to realize that adjacent Fibonacci numbers in the sequence can be combined
into one Fibonacci number by the recurrence relation, which means to optimize for distinct sums
we should pick nonadjacent Fibonacci numbers. In general, we expect a choice of some Fk to
account for 3 of our choices: Fk and its two neighbors. We still leave out F30 as generally too
large, but we no longer need to account for F1 = F2 since they are adjacent. This leads us to the
estimation 29 · 26 · 23 · 20/4! = 14451.666 . . . , which earns 11 points. However, now that we’ve
spaced the Fibonacci numbers apart, we should account for the cases where we select less than 4
distinct numbers. This gives a better estimation 29 ·26 ·23 ·20/4!+29 ·26 ·23/3!+29 ·26/2+29 =
17748 earning 24 points. Only summing the first two terms and ignoring the other two as tiny
gives 17342 scoring 21 points as well.

26. Submit a positive real number c to at most 6 decimal places. Define the function f1(x) = x2+c,
and let fk(0) = f1(fk−1(0)) for k ≥ 2. Let N be the smallest positive integer such that
fN (0) > 2024. If such an N does not exist, your score is 0 points. Otherwise, your score is
max (0, 25− 3|N − 20|) points.
Answer: [0.277648, 0.280858]

Solution: The given answer is the range of values that scores 25 points. Range of submissions
that score points: [0.263591, 0.354188].

Let f(x) = f1(x) for convenience. The first thing to observe is that if we choose c = 0.25, we’ll
have f(x) − x = x2 + 0.25 − x = (x − 0.5)2. Since the distance from x to 0.5 is (0.5 − x) and
(0.5−x) > (0.5−x)2 whenever 0 < x < 1, we can see that fm(x) = fm−1(x)+ (0.5− fm−1(x))2

will never exceed 0.5 by induction. So, our lower bound for c is 0.25.

Then, roughly independently of c, once fm(c) ≈ 2, it will take about 4 more iterations to reach
2024: that is, fm+4(c) > 2024 if fm(c) ≈ 2. Assuming 0.25 < c < 2, we have

2, 4 < 4+c < 6, 16 < 16+2c+c2 < 36, 256 < 256+ · · · < 1296, 2024≪ 2562 < 2562+ · · · < 12962

From here, the method we use to estimate an appropriate value of c is very ad-hoc, and it could
be easier to simply compute (with limited precision) values for some random values of c and
continue refining your guess that way. So, we want to reach 2 in 16 steps. Let d = c− 0.25, and
we assume d is fairly small. Then f(x)−x = (0.5−x)2+ d, where (0.5−x)2 is fairly small after
the first step (less than c2). This means that getting from the first step c to 0.5+ c takes a little
less than 0.75−c

d = 0.5−d
d steps.

Now, we have f(0.5+c) = f(0.75+d) = (0.75+d)2+c = 0.5625+1.5d+d2+c = 0.8125+2.5d+d2

is close to 1. It’s better to overestimate how far we get since we’re ignoring the effects of small
values, so we round up to 1, and suppose that 1 leads to 1+ c leads to a little less than 2, which
will then take us to > 2024 in 4 steps. Therefore, we guess it takes roughly 7 steps to get from
0.5 + c to > 2024, and roughly 0.5−d

d + 1 steps to get from 0 to 0.5 + c. This means we want

to solve 0.5−d
d + 1 = 13, which gives us 13d = 0.5 or d ≈ 0.038. Adding 0.25 to get c gives an

estimate of 0.288, which takes 18 steps to exceed 2024 and gets 19 points.
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At this point, the easiest way to improve your estimate is likely to guess slightly lower and
perform the computation manually to see what you could get: we’ll want to fudge downwards
wherever we can to make up for ignoring a lot of d2 terms. Another strategy is to compute the
true number of steps for 0.288 manually, and then add the difference to the number of steps we
want out of 0.5−d

d + 1. This tells us to set 0.5−d
d + 1 = 15, giving 15d = 0.5 or d = 0.0333. That

gives an estimate of 0.283333, which gets you to 19 steps and 22 points. Iterating on this will give
you a full scoring answer after 2 more attempts, giving a value of c = 0.25 + 1/34 ≈ 0.279412.
You could also attempt to get a better estimate of the effect of the (0.5−x)2 term in f(x)−x, or
manually compute forward until the distance between x and 0.5 is small enough that (0.5− x)2

is negligible to handle the error generated on the left side.

A guess of c = 0.28 earns full points and is likely the easiest full-scoring value to guess from this
point.

27. Oliver rolls a standard, fair 6-sided die 640 times. Oliver tells Tushar that no 5s were rolled
before he rolled a 6 (it is possible he rolled no 5s or 6s). Given this information, Tushar computes
x, the expected number of 6s rolled by Oliver. Compute log5(⌈6x⌉ − 6x). Submit your answer
as a real number E to at most 3 decimal places; if the correct answer is A, you will receive
max (0, 25− ⌊4|A− E|⌋) points.
Answer: -157.21443351782

Solution: Let N = 640 for convenience. Consider some sequence of N rolls S, and let f(S) be
the sequence of rolls obtained by swapping all 5s and 6s. If S has a 5 or a 6, then exactly one
of S, f(S) follows the rule that Oliver did not roll a 5 before a 6. Therefore, the total number
of 5s and 6s in all possible valid sequences S is equal to half the total number of 5s and 6s in all
sequences of N rolls, regardless of validity (since f does not change the total number of 5s and
6s in a sequence).

The expected number of 5s and 6s in a valid sequence is then the total number of 5s and 6s in
all valid sequences divided by the number of valid sequences. The first quantity is half the total
number of 5s and 6s in all sequences given by our earlier argument, which is 1

2 ·2N6N−1 = N6N−1:
there are 2 · 6N−1 sequences with a 5 or 6 in any given position, and multiplying by N counts
the number of 5s or 6s in all positions. The total number of valid sequences is 6N+4N

2 by the
fact that there are 6N − 4N sequences with a 5 or a 6, of which exactly half are valid, and 4N

sequences with no 5 or 6, all of which are valid.

Then, we will find the expected number of 5s instead of the expected number of 6s, since it is
easier to sum. At the end we can subtract this from the expected number of 5s and 6s which
we’ve already computed. We can sum with respect to the position of the first 6: there are 4k−1

valid sequences of length k with the first 6 occurring in position k (since both 5 and 6 cannot
occur in the first k − 1 numbers). The total number of 5s possible after those sequences is
(N − k) · 6N−k−1 (by the same counting we used to count the total number above), so we get
the sum

N−1∑
k=1

4k−1 · (N − k) · 6N−k−1.
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We can simplify this sum as follows:

N−1∑
k=1

4k−1 · (N − k) · 6N−k−1 =
6N−1

4
·
N−1∑
k=1

2k

3k
(N − k)

=
6N−1

4

N−1∑
k=1

k∑
l=1

2l

3l

=
6N−1

4

N−1∑
k=1

2
3

(
1− 2k

3k

)
1− 2

3

=
6N−1

4

N−1∑
k=1

2

(
1− 2k

3k

)

=
6N−1

2

N − 1−
2
3

(
1− 2N−1

3N−1

)
1− 2

3


=

6N−1

2

(
N − 1− 2

(
1− 2N−1

3N−1

))
=

N − 1

2
6N−1 − 6N−1 + 4N−1 =

N − 3

2
6N−1 + 4N−1

as the total number of 5s in all possible sequences. The total number of valid sequences was
found earlier as 6N+4N

2 , so we then divide the total number of 5s by the number of sequences,

getting (N−3)·6N−1+2·4N−1

6N+4N
. In order to get the expected number of 6s, we subtract this from the

total number of 5s and 6s, 2N6N−1

6N+4N
, getting

2N6N−1

6N + 4N
− (N − 3) · 6N−1 + 2 · 4N−1

6N + 4N
=

(N + 3) · 6N−1 − 2 · 4N−1

6N + 4N
= x

Multiplying by 6 yields 6x = (N+3)·6N−3·4N
6N+4N

, which when subtracted from ⌈6x⌉ = (N+3)·6N+(N+3)·4N
6N+4N

is equal to (N+6)4N

6N+4N
. Now, in order to estimate the logarithm of this quantity, we consider the 4N

in the denominator to be negligible, and take log5N +6−N log5
3
2 . Note that

34

24
= 81

16 = 5+ 1
16 .

This enables us to compute N log5
3
2 very accurately as N

4 log5(5 + 1
16). Plugging in N = 640

gives log5 646 − 160 log5(5 + 1
16). Knowing that 54 = 625 ≈ 646 and 160 log5(5 + 1

16) =
160 log5 5 + 2 log5((1 +

1
80)

80) ≈ 160 + log5 e
2 ≈ 161.25 gives a final answer of approximately

log5 646− 160 log5

(
5 +

1

16

)
≈ 4− (161.25) = −157.25

which scores a full 25 points.

If you don’t know that (1 + 1
80)

80 is approximately e, you could use binomial theorem to guess
that (1 + 1

80)
80 was approximately 1 + 1 + 79

160 + 78
480 + · · · ≈ 1 + 1 + 1

2 + 1
6 = 8

3 , so that
2 log5

8
3 = log5

64
9 ≈ 1.25 as well. Alternatively, you might ignore it as negligible altogether and

get an answer of −156 , still scoring 21 points.

If you forget to add log5 646 (or treat the 4N in the numerator as negligible when subtracting,
which would also lead to a similar answer), you’ll get a sum of −161.25 scoring 9 points or

−160 scoring 14 points.
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