
BMT 2024 Discrete Test Solutions November 2, 2024

1. Find the third-largest three-digit multiple of three that is a palindrome. (Recall that a palin-
drome is a number that reads the same forward and backward, such as 444 or 838, but not
227.)

Answer: 939

Solution: In order for a three-digit number to be a palindrome, its units and hundreds digit
must be equal, and for a number to be a multiple of three its digits must sum to a multiple of
three. So, a number of the form 9A9 must have that 9 +A+ 9 = 18 +A is a multiple of three,
which means that A is a multiple of three. Therefore, the largest three-digit multiple of three
that is a palindrome is 999, the second largest is 969, and the third largest is 939 .

2. The 35-step staircase of Sather Tower is being renovated. Each step will be painted a single
color such that the stairs repeat color every 5 steps. There are 14 available stair colors, including
blue and gold. Each color may only cover up to 10 steps, but both blue and gold must be used.
With these restrictions, in how many different ways can the stairs be colored?

Answer: 26400

Solution: Since the pattern of 5 steps repeats 7 times, the number of stairs of any given color
must be a multiple of 7. But there is only enough paint for up to 10 stairs of one color, so each
color can be used at most once in the pattern. There are 5 × 4 ways to choose which stairs in
the pattern receive the blue and gold colors. Then, for the remaining 3 stairs in the pattern,
there are 12!

9! = 12× 11× 10 ways to color them. So, the total number of ways is

5× 4× 12× 11× 10 = 20× 132× 10 = 26400 .

3. Find the number of positive integers, n, such that
20 + n

24− n
is an integer.

Answer: 11

Solution: We are given that
20 + n

24− n
is an integer. We can simplify the numerator as follows:

20 + n

24− n
=

20 + n

24− n
+

24− n

24− n
− 1 =

20 + n+ 24− n

24− n
− 1 =

44

24− n
− 1.

So, we want to determine when
44

24− n
is an integer. This occurs whenever 24− n is a factor of

44. Since n is positive, 24 − n is less than 24, so the possible values of 24 − n are the positive
and negative divisors of 44 that are less than 24. These include ±1,±2,±4,±11,±22,−44. We
conclude that there are 11 possible values of n.

4. Eight players are seated around a circular table. Each player is assigned to either Team Green
or Team Yellow so that each team has at least one player. In how many ways can the players be
assigned to the teams such that each player is on the same team as at least one player adjacent
to them?

Answer: 44

Solution: Since not everyone can be on the same team, there are an even number of contiguous
groups of players on the same team, alternating between Green and Yellow. There are either
four groups of two players on the same team, or there are two contiguous groups on the opposing
teams. In the former case, there are 4 ways (not 8, since this configuration has 180◦ rotational
symmetry). In the latter case divides between Green and Yellow may be 2 vs. 6, 3 vs. 5, 4 vs. 4,
5 vs. 3, or 6 vs. 2, and each of these cases has 8 ways for each rotation around the table. There
are a total of 4 + 8 · 5 = 44 ways.

1



BMT 2024 Discrete Test Solutions November 2, 2024

5. Clara has a pair of nine-sided fair dice, each of whose faces are labeled 1, 2, 3, . . . , 9. Justin also
has a pair of nine-sided fair dice, and the faces of his dice have positive integer labels, but one
of Justin’s dice has the number 13. When Clara and Justin roll their dice, it turns out that for
every number S, the probability that the sum of the results of Clara’s dice is S is equal to the
probability that the sum of the results of Justin’s dice is S. What is the probability that when
Justin’s dice are rolled, the results of the dice are equal?

Answer: 5
81

Solution 1: We are given that the distributions of the sums of Clara’s dice and Justin’s dice
are the same. Included in the 81 equally likely pairs of results are:

• One pair summing to 2.

• Two pairs summing to 3.

• Three pairs summing to 4.

• Two pairs summing to 17.

• One pair summing to 18.

Of Justin’s dice, let die A have a face with the number 13 on it, and let die B have a largest face
value of b. Note that 1 + 1 = 2 is the only way to get a sum of 2 with positive integers, so there
must be a 1 on each die. Additionally, the largest sum 18 must be the sum of the two largest
values of each die, meaning the largest value on both dice must only appear once on that die.
So, the greatest face on die B is 18− b, which is at least 13, so b ≤ 5.

Now, we can use the following logic:

• Since 1 + 2 = 3 and 1 is a face on die A, there are at most two 2’s on die B.

• Since 1 + 3 = 4 and 1 is a face on die A, there are at most three 3’s on die B.

• So, there are at most 1 + 2 + 3 = 6 faces on die B that are less than 4, which forces b > 4
(otherwise die B would have at most 7 total faces, since there could only be one 4 if b = 4).
Therefore, b = 5.

• Since 5 + 13 = 18 and 13 is a face on die A, there is at most one 5 on die B.

• Since 5 + 12 = 17 and 13 is a die on die A, there is at most two 4’s on die B.

• But now, die B has a total of 9 faces if and only if the maximum number of number labels
is achieved for each of the five observations made above.

We conclude that the distribution of die B is (1, 2, 2, 3, 3, 3, 4, 4, 5). Now, we can build the faces
of die A by matching the distribution of Clara’s dice, and we get that the distribution of die A
is (1, 4, 4, 7, 7, 7, 10, 10, 13). The two dice have the same results if they are both 1 or both 4, and

the probability that this happens is
1

9
· 1
9
+

2

9
· 2
9
=

5

81
.

Solution 2: We use generating functions: the results of each of Clara’s nine-sided dice can be
represented as

x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = x(1 + x+ x2)(1 + x3 + x6).

So the generating function for the sum of Clara’s dice is x2(1 + x + x2)2(1 + x3 + x6)2, which
must also be the generating function for the sum of Justin’s dice. To create Justin’s dice, we
first allocate an x to each die to obtain positive face values. In order for each of Justin’s dice to
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have 9 outcomes, the sum of the coefficients of the generating function of each die must be 9, so
we allocate 2 of the factors in (1 + x+ x2)2(1 + x3 + x6)2 to each die. To make sure one of the
generating functions of Justin’s dice has a degree of at least 13, we can separate (1 + x + x2)2

and (1 + x3 + x6)2, so that the generating functions of Justin’s dice are

x(1 + x+ x2)2 = x+ 2x2 + 3x3 + 2x4 + x5

and
x(1 + x3 + x6)2 = x+ 2x4 + 3x7 + 2x10 + x13.

So, the distribution of the faces of Justin’s dice are (1, 2, 2, 3, 3, 3, 4, 4, 5) and (1, 4, 4, 7, 7, 7, 10, 10, 13).
As in the previous solution, the two dice have the same results if they are both 1 or both 4, and

the probability that this happens is
1

9
· 1
9
+

2

9
· 2
9
=

5

81
.

Note: In Solution 2, we don’t actually need to know that one of Justin’s dice has the number
13: there is exactly one different pair of nine-sided dice with the same distribution! Pairs of dice
with unconventional face values whose distributions of sums are the same as a regular pair of
dice are known as Sicherman dice.

6. Find the greatest multiple of 43 whose base 6 representation is a permutation of the digits
1, 2, 3, 4, and 5. (Express your answer in base 10).

Answer: 6020

Solution: Let N be a positive multiple of 43, and let its base-6 representation be abcde6. Note
that abcde6 ≡ a + b + c + d + e (mod 5). Since a, b, c, d, e are 1, 2, 3, 4, 5 in some order, their
sum is 15, which is divisible by 5 = 6 − 1. Therefore, N is divisible by 5, so N is divisible by
43 · 5 = 215 = 63 − 1. Since 63 ≡ 60 (mod 215), we have 0 ≡ abcde6 ≡ ab6 + cde6 (mod 215).
But 0 < ab6 + cde6 < 2 · 5556, so we must have ab6 + cde6 = 5556.

Since 5 is the largest digit in base 6, no carrying occurs in the addition 0ab6 + cde6. So, the
pairs of digits in each place for the addition must be (0, 5), (1, 4), and (2, 3). To maximize N ,
we set 0ab6 = 0436, which forces cde6 = 5126. So, N = 435126 = 6020 .

7. Gigi randomly rearranges four G’s and seven I’s to form an eleven-letter string. What is the
probability that there is a group of four consecutive letters that form “GIGI,” her name?

Answer: 2
5

Solution: There are
(
11
4

)
= 330 equally likely permutations of four G’s and seven I’s. Note

that the four G’s divide the seven I’s into five groups; let a1, a2, a3, a4, and a5 be the number
of I’s in each group from left to right, so that a1 + a2 + a3 + a4 + a5 = 7. To find the number
of eleven-letter strings that contain “GIGI”, we rephrase this condition as follows: a2 = 1 and
a3 ≥ 1, or a3 = 1 and a4 ≥ 1, or a4 = 1 and a5 ≥ 1. This is because a2 = 1 or a3 = 1 creates
a “GIG” sequence, and the next group should contain at least one I. Let the sets of 5-tuples
(a1, a2, a3, a4, a5) summing to 7 and satisfying each respective condition be A,B, and C.

We want to find |A ∩B ∩ C|, so we use Principle of Inclusion-Exclusion, using the nonnegative
integer version of sticks-and-stones to enumerate each intersection of sets:

• |A|, and similarly for |B| and |C|: a2 = 1, a3 ≥ 1 −→ a1 + (a3 − 1) + a4 + a5 = 7− 2 = 5,
in
(
5+4−1
4−1

)
=
(
8
3

)
= 56 ways

• |A∩B|, and similarly for |B ∩C|: a2 = 1, a3 = 1, a4 ≥ 1 −→ a1+(a4− 1)+a5 = 7− 3 = 4,
in
(
4+3−1
3−1

)
=
(
6
2

)
= 15 ways
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• |A ∩ C|: a2 = 1, a3 ≥ 1, a4 = 1, a5 ≥ 1 −→ a1 + (a3 − 1) + (a5 − 1) = 7 − 4 = 3, in(
3+3−1
3−1

)
=
(
5
2

)
= 10 ways

• |A∩B∩C|: a2 = 1, a3 = 1, a4 = 1, a5 ≥ 1 −→ a1+(a5−1) = 7−4 = 3, in
(
3+2−1
2−1

)
=
(
4
1

)
= 4

ways

The total number of eleven-letter strings that contain “GIGI” is

|A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
= 56 + 56 + 56− 15− 10− 15 + 4 = 132.

So the probability is
132

330
=

2

5
.

8. For an arbitrary positive integer n, we define f(n) to be the number of ordered 5-tuples of
positive integers, (a1, a2, a3, a4, a5), such that a1a2a3a4a5 | n. Compute the sum of all n for
which f(n)/n is maximized.

Answer: 2160

Solution: We compute f(n) by considering each prime factor of n separately. Suppose the

prime factorization of n is

k∏
i=1

peii . Then, the divisibility condition is equivalent to the following:

for each prime pi dividing n, if the powers of pi in the prime factorizations of a1, . . . , a5 are
x1, . . . , x5, respectively, then we must have x1 + . . .+ x5 ≤ ei.

So for each prime pi, we must count the number of solutions to x1+x2+x3+x4+x5 ≤ ei where
the xi are nonnegative integers. This is equivalent to ordering ei balls and 5 dividers, which
split the ei balls into 6 groups: the first five groups correspond to the xi, and the last group is
for the left over since the sum of the xi can also be less than ei. Hence there are

(
ei+5
5

)
ways to

choose the exponents xi for this prime.

This process can be repeated for each prime pi | n, and to compute the total number of ways to
choose the ai we simply multiply the number of ways to choose the exponents for each prime,

so f(n) =
k∏

i=1

(
ei + 5

5

)
. Thus, f(n)/n is

f(n)/n =

k∏
i=1

(
ei+5
5

)
peii

.

To maximize this, we again consider one prime at a time. For each prime p, note that increasing
the exponent of p in n from e to e+ 1 will multiply f(n)/n by the quantity(

e+6
5

)
p
(
e+5
5

) =
1

p
· e+ 6

e+ 1
.

Note that this decreases as e increases, and for each p, we should only increase its exponent as
long as this expression is greater than or equal to 1 (if it equals 1, then increasing the exponent
would not change the value of f(n)/n). Hence for p = 2, the optimal exponent is either 4 or 5
(since 1

6 · 4+6
4+1 = 1); for p = 3, we take the exponent to be 2 since 1

3 · 1+6
1+1 > 1 but 1

3 · 2+6
2+1 < 1;

similarly, for p = 5, we can find the optimal exponent to be 1, and for p ≥ 7, the expression
e+6

p(e+1) is always less than 1 so we ignore these primes.
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Hence the values of n which maximize f(n)/n are 24 · 32 · 5 = 720 and 25 · 32 · 5 = 1440, which
sum to 2160 .

9. Compute the remainder when (
41

2
+ 42

2
+ 43

2
+ · · ·+ 482

2
)2

is divided by 83.

Answer: 81

Solution: For brevity, let q = 41 and p = 2q + 1 = 83 be primes, and set a = 4 so that we are
interested in evaluating

S =

(
p−1∑
k=1

ak
2

)2

=
∑

1≤k,ℓ≤2q

ak
2+ℓ2

modulo p.

The main point is that the exponent k2 + ℓ2 is only considered (mod 2q), so the main part
of the computation is determining the number of solutions to k2 + ℓ2 ≡ d (mod 2q) for some
d ∈ {1, 2, . . . , 2q} where k, ℓ ∈ {1, 2, . . . , 2q}. By the Chinese remainder theorem, it suffices to
separate the problem into (mod 2) and (mod q) variants of this problem.

For the (mod 2) problem, we note that the values 02 + 02 and 02 + 12 and 12 + 02 and 12 + 12

hits 0 (mod 2) twice and 1 (mod 2) twice. For the (mod q) problem, we have two cases.

• Suppose d ≡ 0 (mod q). Then we are counting the number of pairs (k, ℓ) ∈ {1, 2, . . . , q}2
such that k2 + ℓ2 ≡ 0 (mod q). However, q ≡ 1 (mod 4), so −1 is a (nonzero) square
(mod q), so it suffices to count pairs (k, ℓ) such that k2−ℓ2 ≡ 0 (mod q), which is equivalent
to k ≡ ±ℓ (mod q). For each nonzero k (mod q), there are two values of ℓ; otherwise,
k ≡ ℓ ≡ 0 (mod q) has one solution. This totals to 2q − 1 pairs (k, ℓ).

• Suppose d ̸≡ 0 (mod q). Then we are counting the number of pairs (k, ℓ) ∈ {1, 2, . . . , q}2
such that k2 + ℓ2 ≡ d (mod q). As before, we see that −1 is a nonzero square (mod q), so
it suffices to count pairs (k, ℓ) such that

(k + ℓ)(k − ℓ) = k2 − ℓ2 ≡ d (mod q).

Doing a change of variables with x = k + ℓ and y = k − ℓ, it suffices to count pairs (x, y)
such that xy ≡ d (mod q). However, this is equivalent to x ≡ ay−1 (mod q), so we have
q − 1 pairs (x, y) in this case.

Combining the above work with the Chinese remainder theorem, we see

#
{
(k, ℓ) ∈ {1, 2, . . . , 2q}2 : k2 + ℓ2 ≡ d (mod 2q)

}
=

{
2(2q − 1) if d ≡ 0 (mod q),

2(q − 1) if d ̸≡ 0 (mod q).

It follows that

S ≡ 2(q − 1)

2q∑
d=1

ad + 2q
(
a0 + aq

)
.

Quickly, note that a ̸≡ 1 (mod p) allows us to write

2q∑
d=1

ad ≡ a2q+1 − a

a− 1
≡ ap − a

a− 1
≡ 0 (mod p)
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using the formula of a partial sum of a geometric series followed by Fermat’s little theorem.
Finishing up, we see that

S ≡ (p− 1)
(
40 + 4(p−1)/2

)
≡ −

(
1 + 2p−1

)
≡ −2 (mod p),

so our answer is p− 2 = 81 .

10. The positive integers 1 through 9 are placed in the 9 cells of a 3×3 grid. Then, for every pair of
cells sharing a side, the sum of the numbers in that pair is recorded in a list. The most number
of times any number occurs in the list is 4. In how many ways could numbers have been placed
in the grid?

Answer: 20616

Solution: Let m be a mode of the list, so that m = a1+a2 = a3+a4 = a5+a6 = a7+a8 where
1 ≤ ak ≤ 9, and for 1 ≤ i ≤ 4, a2i−1 ̸= a2i and each unordered pair {a2i−1, a2i} is distinct. Then
each ak is distinct: if WLOG a1 = a3, then a2 = m− a1 = m− a3 = a4, so {a1, a2} = {a3, a4},
which is a contradiction. Let a9 be the remaining number from 1 to 9 distinct from the ai’s.

Then 4m =
(∑9

i=1 ai

)
− a9 = 45− a9, so m =

45− a9
4

. Since m is an integer, a9 may only be

1, 5, or 9, which lead to unique pairings that sum to m = 11, 10, and 9, respectively.

We may place the numbers in the grid with the following process:

• First, we tile the grid with four 2× 1 dominoes and one 1× 1 square to establish the pairs
of cells that sum to m.

• Then, we establish the value of a9, and place it in the 1× 1 square.

• Finally, we place the pairs of numbers summing to m in the dominoes.

To tile the grid, we may either place the 1 × 1 square in a corner or in the center; there is no
tiling where the square is placed on a side cell. If the square is placed in one of the 4 corners,
there are 4 ways to tile the rest of the grid with the dominoes. If the square is placed in the
center, there are 2 ways to tile the rest of the grid with the dominoes. Thus, there are a total
of 4 · 4+2 = 18 ways to tile the grid. There are 3 ways to set the value of a9 to either 1, 5, or 9.
Then, there are 4! = 24 ways to assign the pairs of numbers to the dominoes, after which there
are 24 = 16 ways to choose which number in each pair goes in which cell of the pair’s assigned
domino. The total number of ways according to this method is 18 · 3 · 24 · 16 = 20736.

However, we overcount cases where the mode is not unique, and there are two possibilities for
ai. If ai may be both 1 and 9 in a given grid, then the modes are 11 and 9, giving the chain of
adjacent squares 1− 8− 3− 6− 5− 4− 7− 2− 9. If ai may be both 1 and 5 in a given grid, then
the modes are 11 and 10, giving the chain of adjacent squares 1−9−2−8−3−7−4−6−5. If ai
may be both 5 and 9 in a given grid, then the modes are 10 and 9, giving the chain of adjacent
squares 9−1−8−2−7−3−6−4−5. The chain could start from either a corner from which there
are 8 different paths, or the center of the grid from which there are also 8 different paths. This
gives 8 ·4+8 = 40 possible chains in all and thus 3 ·40 = 120 grids that are counted twice. Note
that modes of 9, 10, and 11 cannot occur simultaneously: in that case, since there are exactly
12 adjacency pairs in the grid, the list of pair sums would be 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11.
However, the middle cell of the grid yields four distinct sums (as it is adjacent to four distinct
numbers), which is a contradiction. Thus, the total number of ways is 20736− 120 = 20616 .
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