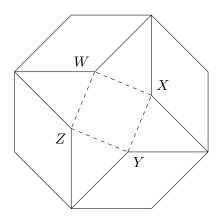
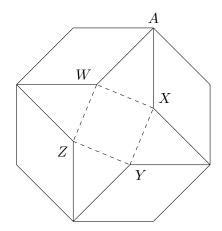
1. Points W, X, Y, and Z are chosen inside a regular octagon so that four congruent rhombuses are formed, as shown in the diagram below. If the side length of the octagon is 1, compute the area of quadrilateral WXYZ.



Answer: $2 - \sqrt{2}$

Solution: Let the closest vertex of the octagon between W and X be A.

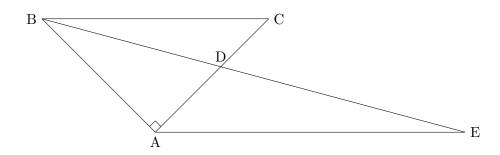


Since rhombuses are formed, WA = XA = 1. Using formula

interior angle =
$$\frac{180^{\circ} \cdot (n-2)}{n}$$

where n is the number of the sides of the octagon, we know that the interior angle of the octagon is 135°. Thus, $\angle WAX = 135^{o} - (180^{o} - 135^{o}) \cdot 2 = 45^{o}$. Using law of cosines on $\triangle WAX$, we can see $WX^{2} = WA^{2} + XA^{2} - 2 \cdot WA \cdot XA \cdot \cos(\angle WAX) = 1^{2} + 1^{2} - 2 \cdot 1 \cdot 1 \cdot \frac{\sqrt{2}}{2} = 2 - \sqrt{2}$. By symmetry, WXYZ is a square whose area is $WX^{2} = \boxed{2 - \sqrt{2}}$.

2. Triangle △ABC has ∠ABC = ∠BCA = 45° and AB = 1. Let D be on AC such that ∠ABD = 30°. Let BD and the line through A parallel to BC intersect at E. Compute the area of △ADE. Answer: 3+√3/12
Solution:

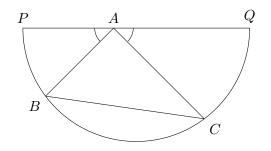


Triangles $\triangle ADE$ and $\triangle CDB$ are similar. Thus, the area of $\triangle ADE$ is $(\frac{AD}{DC})^2$ times the area of $\triangle CDB$. Since $\angle ABD = 30^\circ$ and AB = 1, we have $AD = \frac{1}{\sqrt{3}}$ and $DC = 1 - \frac{1}{\sqrt{3}}$. Thus, the area of $\triangle ADE$ is $\frac{1}{2}\left(1 - \frac{1}{\sqrt{3}}\right)\left(\frac{1/\sqrt{3}}{1 - (1/\sqrt{3})}\right)^2 = \left[\frac{3 + \sqrt{3}}{12}\right]$.

3. Points A, B, and C lie on a semicircle with diameter \overline{PQ} such that AB = 3, AC = 4, BC = 5, and A is on \overline{PQ} . Given $\angle PAB = \angle QAC$, compute the area of the semicircle.

Answer: $\frac{25\pi}{4}$

Solution: Since $\angle PAB = \angle QAC$, *B* and *C* cannot lie on diameter *PQ*. Otherwise, one of $\angle PAB$ and $\angle QAC$ would be 0° or 180° and the other one would be 90°. So we can construct the diagram below.



Consider reflecting the whole picture across \overline{PQ} , creating points A', B', and C'(A') is the same point as A). Since $\angle PAB = \angle QAC = \frac{\pi}{4}$, we must have $\angle B'AB = \angle C'AC = \frac{\pi}{2}$. Thus, two isosceles right triangles are formed, and $BB' = 3\sqrt{2}$ and $CC' = 4\sqrt{2}$. If the center of the semicircle is O, then the central angle $\angle B'OB$ equals $2\angle B'CB = 2\sin^{-1}(\frac{3}{5})$. Then, $\angle B'OP = \sin^{-1}(\frac{3}{5}) \rightarrow \frac{3}{5} = \frac{0.5 \cdot B'B}{r}$, so $r = \frac{5\sqrt{2}}{2}$ and the area of the semicircle is therefore $\boxed{\frac{25\pi}{4}}$.