1. Let $A B C D E F G H$ be a unit cube such that $A B C D$ is one face of the cube and $\overline{A E}, \overline{B F}, \overline{C G}$, and $\overline{D H}$ are all edges of the cube. Points I, J, K, and L are the respective midpoints of $\overline{A F}$, $\overline{B G}, \overline{C H}$, and $\overline{D E}$. The inscribed circle of $I J K L$ is the largest cross-section of some sphere. Compute the volume of this sphere.
Answer: $\frac{\sqrt{2}}{24} \pi$
Solution: Note that I, J, K, L are the centers of the faces $A B F E, B C G F, C D H G$, and $D A E H$, respectively. Thus, $I J K L$ is a square, and its side length is the hypotenuse of an isosceles right triangle with side length $\frac{1}{2}$, so it is $\frac{\sqrt{2}}{2}$. This means that the inscribed circle of $I J K L$ will have a radius which is one half the side length of $I J K L$, so the radius is $\frac{\sqrt{2}}{4}$. Thus, the sphere also has radius $\frac{\sqrt{2}}{4}$, and hence its volume is $\frac{\sqrt{2}}{24} \pi$.
2. Let $A B C D$ be a unit square. Points E and F are chosen on line segments $\overline{B C}$ and $\overline{C D}$, respectively, such that the area of $A B E F D$ is three times the area of triangle $\triangle E C F$. Compute the maximum possible area of triangle $\triangle A E F$.

Answer: $\frac{1}{2}$

Solution: Let $B E=x$ and $D F=y$. Since the areas of $A B E F D$ and $E C F$ sum to the area of the entire square $A B C D$, which is 1 , we have that $[E C F]=\frac{1}{4}$. That is, $\frac{1}{2}(1-x)(1-y)=\frac{1}{4}$. Rearranging this equation gives $x+y=\frac{1}{2}+x y$. Now, note that

$$
\begin{aligned}
{[A E F] } & =[A B E F D]-[A B E]-[A D F] \\
& =\frac{3}{4}-\frac{1}{2} \cdot 1 \cdot x-\frac{1}{2} \cdot 1 \cdot y \\
& =\frac{3}{4}-\frac{x+y}{2} \\
& =\frac{1}{2}-\frac{x y}{2}
\end{aligned}
$$

We now want to maximize this expression. Equivalently, we will minimize $x y$. Since $x, y \geq 0$, we will always have that $x y \geq 0$, so the minimum possible value is 0 . This can indeed be achieved while satisfying the condition $x+y=\frac{1}{2}+x y$, for example with $x=0$ and $y=\frac{1}{2}$. Hence the maximum possible area of $[A E F]$ is | $\frac{1}{2}$ |
| :---: | .

3. In triangle $\triangle A B C, M$ is the midpoint of $\overline{A B}$ and N is the midpoint of $\overline{A C}$. Let P be the midpoint of $\overline{B N}$ and let Q be the midpoint of $\overline{C M}$. If $A M=6, B C=8$ and $B N=7$, compute the perimeter of triangle $\triangle N P Q$.
Answer: $\frac{17}{2}$
Solution: Let X be the midpoint of $\overline{B M}$ and let Y be the midpoint of $\overline{C N}$.
First, note that since M, N are the midpoints of $\overline{A B}, \overline{A C}$, respectively, we have that $\triangle A M N \sim$ $\triangle A B C$ with the ratio of similarity being $\frac{1}{2}$. That is, $M N=\frac{1}{2} B C=4$. Similarly, since X, P are the midpoints of $\overline{B M}, \overline{B N}$, respectively, we have that $\triangle B X P \sim \triangle B M N$ with the ratio of similarity being $\frac{1}{2}$. Thus $X P=\frac{1}{2} M N=2$. By the same logic, we get that $Q Y=\frac{1}{2} M N=2$. Also, since $\frac{A X}{A B}=\frac{A Y}{A B}=\frac{3}{4}$, we have that $X Y=\frac{3}{4} B C=6$ by the similarity $\triangle A X Y \sim \triangle A B C$. Hence

$$
P Q=X Y-X P-Q Y=6-2-2=2
$$

Also, since $\frac{C Q}{C M}=\frac{C N}{C A}=\frac{1}{2}$, we have that $\triangle C Q N \sim \triangle C M A$ with ratio of similarity $\frac{1}{2}$. Hence $N Q=\frac{1}{2} A M=3$. Finally, since P is the midpoint of $\overline{B N}, N P=\frac{1}{2} B N=\frac{7}{2}$. Thus the perimeter of triangle $\triangle N P Q$ is

$$
P Q+N Q+N P=2+3+\frac{7}{2}=\frac{17}{2}
$$

