1. How many three-digit positive integers have digits which sum to a multiple of 10 ?

Answer: 90

Solution: If the first digit is a and the second digit is b, then there will always be exactly one valid choice for the third digit, which is the digit equivalent to $-a-b(\bmod 10)$. Since there are 9 possibilities for the first digit and 10 for the second digit, the answer is $9 \cdot 10=90$.
2. A positive integer is called extra-even if all of its digits are even. Compute the number of positive integers n less than or equal to 2022 such that both n and $2 n$ are both extra-even.

Answer: 31

Solution: We claim that a positive integer n has both n and $2 n$ extra-even if and only if all of its digits are in $\{0,2,4\}$. Note that this is sufficient because n will have all of its digits in $\{0,2,4\}$ and $2 n$ will have all of its digits in $\{0,4,8\}$.

To see that this is necessary, we note that n must have all of its digits in $\{0,2,4,6,8\}$, so we just need to rule out 6 s and 8 s . If n has a 6 or 8 , then we can write

$$
n=10^{a+1} n_{1}+10^{a} d+n_{2},
$$

where n_{1} and n_{2} are extra-even, and $d \in\{6,8\}$. Then

$$
2 n=10^{a+1}\left(2 n_{1}+1\right)+10^{a}(2 d-10)+2 n_{2},
$$

so we see that the digit in the 10^{a+1} place (which is the last digit of $2 n_{1}+1$) must have an odd digit. Thus, $2 n$ is not extra-even.
We now count the number of positive integers less than or equal to 2022 with all digits in $\{0,2,4\}$. We have the following cases.

- At most three digits: the number of nonnegative integers with at most three digits and digits in $\{0,2,4\}$ is $3 \cdot 3 \cdot 3$, but we must then exclude 000 . So we have $3 \cdot 3 \cdot 3-1$ options here.
- Four digits: we must begin with 20 _.. The next digit is either a 0 , which gives three options for the last digit, or a 2 , which gives two options for the last digit.

Totaling the above, we have $3 \cdot 3 \cdot 3-1+3+2=27-1+5=31$ total positive integers.
3. Let A be the product of all positive integers less than 1000 whose ones or hundreds digit is 7 . Compute the remainder when $A / 101$ is divided by 101 .
Answer: 19
Solution: We will use Wilson's theorem to get rid of blocks of numbers.

- Consider the block of numbers which have a ones digit of 7 . We claim that the numbers $7,17,27, \ldots, 997$, not including 707 , cover all nonzero remainders except for $1007 \equiv-3$ $(\bmod 101)$. This is because all of these numbers are of the form $7+10 i$, for $i \in\{0, \ldots, 99\}$. Note that if any $7+10 i \equiv 7+10 j(\bmod 101)$, then $10(i-j) \equiv 0(\bmod 101)$, and since since $\operatorname{gcd}(10,101)=1$, this implies that $101 \mid i-j$. But this never happens for distinct $i, j \in\{0, \ldots, 99\}$, so all of the numbers are distinct modulo 101. Aside from 707, there are 99 of them, so the claim follows. Therefore by Wilson's theorem,

$$
\frac{7 \cdot 17 \cdot 27 \cdots 997}{101} \equiv(-1) \cdot 7 \cdot(-3)^{-1} \equiv 7 \cdot 3^{-1} \quad(\bmod 101)
$$

- Consider the block of numbers which have a hundreds digit of 7 . The numbers 700,701 , $\ldots, 799$, not including 707, cover all nonzero remainders except for $800 \equiv-8(\bmod 101)$. Therefore by Wilson's theorem,

$$
\frac{700 \cdot 701 \cdots 799}{101} \equiv(-1) \cdot 7 \cdot(-8)^{-1} \equiv 7 \cdot 8^{-1} \quad(\bmod 101) .
$$

- Lastly, the above two blocks both include $707,717, \ldots, 797$, so we need to divide out by a factor of 7 from the 707 and also divide out by

$$
\begin{aligned}
717 \cdot 727 \cdots 797 & \equiv 10 \cdot 20 \cdots 90 \\
& \equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10^{9} \\
& \equiv 3 \cdot 4 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 100^{5} \\
& \equiv 29 \cdot(-1)^{5} \\
& \equiv 72 \quad(\bmod 101) .
\end{aligned}
$$

In total, we combine the above to compute

$$
\begin{aligned}
\frac{A}{101} & \equiv 7 \cdot 3^{-1} \cdot 7 \cdot 8^{-1} \cdot 7^{-1} \cdot 72^{-1} \\
& \equiv 7 \cdot(3 \cdot 8 \cdot 72)^{-1} \\
& \equiv 7 \cdot 11^{-1} \\
& \equiv 7 \cdot 46 \\
& \equiv 19 \quad(\bmod 101) .
\end{aligned}
$$

