1. Compute

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sin ^{2}(x)+\frac{\mathrm{d}}{\mathrm{~d} x} \cos ^{2}(x) .
$$

Answer: 0

Solution: We compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sin ^{2}(x)+\frac{\mathrm{d}}{\mathrm{~d} x} \cos ^{2}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin ^{2}(x)+\cos ^{2}(x)\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}(1) \\
& =0 .
\end{aligned}
$$

2. Let $f(x)=(x-2)(x-7)^{2}+2 x$. Compute the unique real number c not equal to 7 such that $f^{\prime}(c)=f^{\prime}(7)$.
Answer: $\frac{11}{3}$
Solution: First of all, by the product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\left((x-7)^{2}+(x-2) \cdot 2(x-7)\right)+2 \\
& =(3 x-11)(x-7)+2 .
\end{aligned}
$$

One strategy would be to expand out. Alternatively, note that a real number c has $f^{\prime}(c)=f^{\prime}(7)$ if and only if

$$
\begin{aligned}
(3 c-11)(c-7) & =f^{\prime}(c)-2 \\
& =f^{\prime}(7)-2 \\
& =(3 \cdot 7-11)(7-7) \\
& =0 .
\end{aligned}
$$

This gives $c=7$ or $c=11 / 3$, so the answer is $\frac{11}{3}$.
3. Compute

$$
\int_{0}^{1} e^{x+e^{x}+e^{e^{x}}} \mathrm{~d} x
$$

Answer: $e^{e^{e}}-e^{e}$
Solution: Chain Rule tells us

$$
\frac{\mathrm{d}}{\mathrm{~d} x} e^{e^{e^{x}}}=e^{x} e^{e^{x}} e^{e^{e^{x}}}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{1} e^{x} e^{e^{x}} e^{e^{e^{x}}} \mathrm{~d} x & =\left[e^{e^{e^{x}}}\right]_{0}^{1} \\
& =e^{e^{e}}-e^{e}
\end{aligned}
$$

as desired.
4. Let $f(x)$ be a degree-4 polynomial such that $f(x)$ and $f^{\prime}(x)$ both have 20 and 22 as roots. Given that $f(21)=21$, compute $f(23)$.
Answer: 189
Solution: We claim that $f(x)$ has double roots at both 20 and 22 . Indeed, suppose a real number a has $f(a)=f^{\prime}(a)=0$. Because $f(a)=0$, we may factor $f(x)=(x-a) g(x)$ for some polynomial $g(x)$. Applying the product rule, we see

$$
f^{\prime}(x)=(x-a) g^{\prime}(x)+g(x),
$$

so $f^{\prime}(a)=0$ forces $g(a)=0$. In particular, we may factor $g(x)=(x-a) h(x)$ for some polynomial $h(x)$, so $f(x)=(x-a)^{2} h(x)$.
Applying the above argument with $a=20$ and $a=22$, we may write $f(x)=(x-20)^{2}(x-22)^{2} r(x)$ for some polynomial $r(x)$. However, $f(x)$ has degree 4, so $r(x)=c$ for some real number c. Using the fact that $f(21)=21$, we see

$$
\begin{aligned}
c & =c(21-20)^{2}(21-22)^{2} \\
& =f(21) \\
& =21 .
\end{aligned}
$$

Thus, $f(x)=21(x-20)^{2}(x-22)^{2}$, so $f(23)=21 \cdot 9 \cdot 1=189$.
5. Compute

$$
\sum_{n=0}^{\infty}\left(\sqrt{n^{2}+3 n+2}-\sqrt{n^{2}+n}-1\right)
$$

Answer: $\frac{1}{2}$

Solution: Let S be the value of the series, and let $S_{k}=\sum_{n=0}^{k}\left[\sqrt{n^{2}+3 n+2}-\sqrt{n^{2}+n}-1\right]$. Note that $\lim _{k \rightarrow \infty} S_{k}=S$. For a given k, we compute

$$
\begin{aligned}
S_{k} & =\sum_{n=0}^{k}[\sqrt{(n+1)(n+2))}-\sqrt{n(n+1)}-1] \\
& =\sum_{n=0}^{k} \sqrt{(n+1)(n+2)}-\sum_{n=0}^{k} \sqrt{n(n+1)}+\sum_{n=0}^{k}(-1) \\
& =\sum_{n=1}^{k+1} \sqrt{n(n+1)}-\sum_{n=0}^{k} \sqrt{n(n+1)}+\sum_{n=0}^{k}(-1) \\
& =\sqrt{(k+1)(k+2)}-(k+1)
\end{aligned}
$$

Taking the limit,

$$
\begin{aligned}
S & =\lim _{k \rightarrow \infty} S_{k} \\
& =\lim _{k \rightarrow \infty} \sqrt{(k+1)(k+2)}-(k+1) \\
& =\lim _{k \rightarrow \infty} \frac{k+1}{\sqrt{(k+1)(k+2)}+k+1} \\
& =\frac{1}{2} .
\end{aligned}
$$

6. Compute

$$
\int_{0}^{\pi / 3} \sec (x) \sqrt{\tan (x) \sqrt{\tan (x) \sqrt{\tan (x) \sin (x)}}} \mathrm{d} x
$$

Answer: $\frac{8}{7}\left(2^{7 / 8}-1\right)$
Solution: We simplify the inside of the radical. To begin, let I be the value of the integral. We note

$$
\begin{aligned}
I & =\int_{0}^{\pi / 3} \frac{\tan (x)}{\sin (x)} \sqrt{\tan (x) \sqrt{\tan (x) \sqrt{\tan (x) \sin (x)}}} \mathrm{d} x \\
& =\int_{0}^{\pi / 3} \tan (x) \sqrt{\sec (x) \sqrt{\sec (x) \sqrt{\sec (x)}} \mathrm{d} x} \\
& =\int_{0}^{\pi / 3} \frac{\tan (x) \sec (x) \sqrt{\sec (x) \sqrt{\sec (x) \sqrt{\sec (x)}}}}{\sec (x)} \mathrm{d} x .
\end{aligned}
$$

Setting $u=\sec (x)$, we see $\mathrm{d} u=\tan (x) \sec (x) \mathrm{d} x$, so the integral becomes

$$
\int_{1}^{2} \frac{\sqrt{u \sqrt{u \sqrt{u}}}}{u} \mathrm{~d} u=\int_{1}^{2} u^{-1 / 8} \mathrm{~d} u
$$

Applying the power rule, we see

$$
\begin{aligned}
\int_{1}^{2} u^{-1 / 8} \mathrm{~d} u & =\left[\frac{u^{7 / 8}}{7 / 8}\right]_{1}^{2} \\
& =\frac{2^{7 / 8}-1}{7 / 8} \\
& =\frac{8}{7}\left(2^{7 / 8}-1\right)
\end{aligned}
$$

7. Compute

$$
\lim _{x \rightarrow 0}\left(1+\int_{0}^{x} \frac{\cos (t)-1}{t^{2}} \mathrm{~d} t\right)^{1 / x}
$$

Answer: $\frac{1}{\sqrt{e}}$
Solution: To begin, we set

$$
f(x)=\int_{0}^{x} \frac{\cos (t)-1}{t^{2}} \mathrm{~d} t
$$

In particular, $f(0)=0$ and $f^{\prime}(x)=(\cos (x)-1) / x^{2}$. In fact, applying L'Hôpital's rule, we compute

$$
\begin{aligned}
\lim _{x \rightarrow 0} f^{\prime}(x) & =\lim _{x \rightarrow 0} \frac{-\sin (x)}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{-\cos (x)}{2} \\
& =-\frac{1}{2}
\end{aligned}
$$

We now proceed with the solution. The key idea is to write

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(1+\int_{0}^{x} \frac{\cos (t)-1}{t^{2}} \mathrm{~d} t\right)^{1 / x} & =\lim _{x \rightarrow 0}(1+f(x))^{1 / x} \\
& =\exp \left(\lim _{x \rightarrow 0} \ln \left((1+f(x))^{1 / x}\right)\right) \\
& =\exp \left(\lim _{x \rightarrow 0} \frac{\ln (1+f(x))}{x}\right),
\end{aligned}
$$

where \ln denotes the natural logarithm and exp denotes the exponential function. Applying L'Hôpital's rule to the limit, we see

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln (1+f(x))}{x} & =\lim _{x \rightarrow 0} \frac{f^{\prime}(x) /(1+f(x))}{1} \\
& =\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{1+f(x)} \\
& =\frac{-1 / 2}{1+0} \\
& =-\frac{1}{2}
\end{aligned}
$$

Thus, our answer is $\exp \left(-\frac{1}{2}\right)=\frac{1}{\sqrt{e}}$.
8. At the Berkeley Mart for Technology, every item has a real-number cost independently and uniformly distributed from 0 to 2022. Sumith buys different items at the store until the total amount he spends strictly exceeds 1 . Compute the expected value of the number of items Sumith buys.

Answer: $e^{1 / 2022}$

Solution: Define $f(x)$ to be the expected value of the additonal number of items Sumith buys, given that he has already spent x. Our goal is to find $f(0)$. The key idea is to frame this as a states problem: note $f(x)=0$ for $x>1$, and for any x with $0 \leq x \leq 1$, we have

$$
f(x)=1+\frac{1}{2022} \int_{x}^{x+2022} f(x) \mathrm{d} x=1+\frac{1}{2022} \int_{x}^{1} f(x) \mathrm{d} x .
$$

Taking the derivative of both sides, we obtain a differential equation

$$
f^{\prime}(x)=-\frac{f(x)}{2022}
$$

which has solution $f(x)=C e^{-x / 2022}$ where C is some real-number constant. Because $f(1)=1$, we must have

$$
f(x)=e^{(1-x) / 2022}
$$

Therefore, our answer is $f(0)=e^{1 / 2022}$.
9. Compute

$$
\int_{0}^{\frac{\pi}{2}} \cot (x) \ln (\cos (x)) \mathrm{d} x
$$

where \ln denotes the natural logarithm.
Answer: - $\frac{\pi^{2}}{24}$
Solution: Notice that we can manipulate

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \cot (x) \ln (\cos (x)) \mathrm{d} x & =\int_{0}^{\frac{\pi}{2}} \frac{\cos (x) \ln (\cos (x))}{\sin (x)} \mathrm{d} x \\
& =\int_{0}^{\frac{\pi}{2}} \frac{\cos (x) \ln \left(\cos ^{2}(x)\right)}{2 \sin (x)} \mathrm{d} x \\
& =\int_{0}^{\frac{\pi}{2}} \frac{\cos (x) \ln \left(1-\sin ^{2}(x)\right)}{2 \sin (x)} \mathrm{d} x
\end{aligned}
$$

Consider the u-substitution $u=\sin (x)$. Then $\mathrm{d} u=\cos (x) \mathrm{d} x$, so

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos (x) \ln \left(1-\sin ^{2}(x)\right)}{2 \sin (x)} \mathrm{d} x=\frac{1}{2} \int_{0}^{1} \frac{\ln \left(1-u^{2}\right)}{u} \mathrm{~d} u
$$

Using the Taylor expansion $\ln (1-x)=-\sum_{k=1}^{\infty} \frac{x^{k}}{k}$, we get

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{1} \frac{\ln \left(1-u^{2}\right)}{u} \mathrm{~d} u & =-\frac{1}{2} \int_{0}^{1} \frac{1}{u}\left(\sum_{k=1}^{\infty} \frac{u^{2 k}}{k}\right) \mathrm{d} u \\
& =-\frac{1}{2} \int_{0}^{1}\left(\sum_{k=1}^{\infty} \frac{u^{2 k-1}}{k}\right) \mathrm{d} u
\end{aligned}
$$

We may flip the integral and summation sign (this is intuitively clear but can be made rigorous due to a result from real analysis), which gives

$$
\begin{aligned}
-\frac{1}{2} \int_{0}^{1}\left(\sum_{k=1}^{\infty} \frac{u^{2 k-1}}{k}\right) \mathrm{d} u & =-\frac{1}{2} \sum_{k=1}^{\infty}\left(\int_{0}^{1} \frac{u^{2 k-1}}{k} \mathrm{~d} u\right) \\
& =-\frac{1}{4} \sum_{k=1}^{\infty}\left[\frac{u^{2 k}}{k^{2}}\right]_{0}^{1} \\
& =-\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \\
& =-\frac{\pi^{2}}{24} .
\end{aligned}
$$

10. A unit cube is rotated around an axis containing its longest diagonal. Compute the volume swept out by the rotating cube.
Answer: $\frac{\pi}{\sqrt{3}}$
Solution: Let the corners of the cube be represented by the points $(0,0,0),(1,0,0),(0,1,0)$, $\ldots,(1,1,1)$, and say that we are rotating the cube about line L, which contains $(0,0,0)$ and $(1,1,1)$. Here is the image, where L has been aligned vertically.

This solid of revolution will consist of three parts: a cone (yellow), a middle part (orange), and a cone (shaded). By symmetry, the volume of the two cones are the same, so we only need to find the volumes of the middle part and one cone. We define $f(x)$ to be the radius of the solid at a distance x above $(0,0,0)$ along the axis. Note that the corresponding point to rotate around is $\frac{1}{\sqrt{3}}(x, x, x)$.
We now split the volume computations into two parts.

- We compute the volume of the middle part. By symmetry, we can see that the surface of the middle part will be traced out by rotating the segment containing ($1,0,0$) and ($1,1,0$) about the axis. First of all, we parametrize this line segment as $(1, t, 0)$ for $0 \leq t \leq 1$.
Now, we fix t and define x_{t} such that $\frac{1}{\sqrt{3}}\left(x_{t}, x_{t}, x_{t}\right)$ is the closest point on L to $(1, t, 0)$. In particular, note that

$$
f\left(x_{t}\right)^{2}=\left\|(1, t, 0)-\frac{1}{\sqrt{3}}\left(x_{t}, x_{t}, x_{t}\right)\right\|,
$$

which lets us find $f(x)$ for the middle part; here, $\|(a, b, c)\|=a^{2}+b^{2}+c^{2}$. For the fixed t, we will find $f\left(x_{t}\right)^{2}$ and the corresponding x_{t} by noting

$$
f\left(x_{t}\right)^{2}=\min _{x \in[0, \sqrt{3}]}\left\|(1, t, 0)-\frac{1}{\sqrt{3}}(x, x, x)\right\| .
$$

Indeed, to simplify the expression, set $y=\frac{x}{\sqrt{3}}$, which gives

$$
\begin{aligned}
f\left(x_{t}\right)^{2} & =\min _{y \in[0,1]}\left((1-y)^{2}+(t-y)^{2}+y^{2}\right) \\
& =\min _{y \in[0,1]}\left(3 y^{2}-2 y(t+1)+t^{2}+1\right) .
\end{aligned}
$$

We find the minimum by taking the derivative and setting to 0 , which gives $y_{t}=\frac{1+t}{3}$. Plugging this, we solve

$$
f\left(x_{t}\right)^{2}=\frac{2}{3}\left(t^{2}-t+1\right) .
$$

Lastly, we extract t : because $y_{t}=\frac{1+t}{3}$, we see $x_{t}=\frac{1+t}{\sqrt{3}}$. Thus, $t=x_{t} \sqrt{3}-1$, so in fact

$$
f\left(x_{t}\right)^{2}=2 x_{t}^{2}-2 x_{t} \sqrt{3}+2,
$$

where $0 \leq t \leq 1$.
The above equation defines $f(x)$ for the middle part, which we can now see is over the interval $\left[x_{0}, x_{1}\right]=[1 / \sqrt{3}, 2 / \sqrt{3}]$. We now may compute the volume of the middle part as

$$
\begin{aligned}
V_{\text {middle }} & =\int_{x_{0}}^{x_{1}} \pi f(x)^{2} \mathrm{~d} x \\
& =\pi \int_{1 / \sqrt{3}}^{2 / \sqrt{3}}\left(2 x^{2}-2 x \sqrt{3}+2\right) \mathrm{d} x \\
& =\pi\left(\frac{2}{3}\left[x^{3}\right]_{1 / \sqrt{3}}^{2 / \sqrt{3}}-\sqrt{3}\left[x^{2}\right]_{1 / \sqrt{3}}^{2 / \sqrt{3}}+2[x]_{1 / \sqrt{3}}^{2 / \sqrt{3}}\right) \\
& =\pi\left(\frac{2}{3} \cdot \frac{7}{3 \sqrt{3}}-\sqrt{3} \cdot \frac{3}{3}+2 \cdot \frac{1}{\sqrt{3}}\right) \\
& =\frac{5 \pi}{9 \sqrt{3}} .
\end{aligned}
$$

- We compute the volume of the cones. Each of the cones has height x_{0} and radius $f\left(x_{0}\right)$, where $x_{0}=1 / \sqrt{3}$ with $f\left(x_{0}\right)^{2}=2 / 3$ was computed above. Thus, the volume of the cones is

$$
\begin{aligned}
V_{\text {cones }} & =2 \cdot \frac{\pi}{3} \cdot f\left(x_{0}\right)^{2} \cdot x_{0} \\
& =\frac{2 \pi}{3} \cdot \frac{2}{3} \cdot \frac{1}{\sqrt{3}} \\
& =\frac{4 \pi}{9 \sqrt{3}} .
\end{aligned}
$$

Summing, the volume of the entire solid is

$$
V=V_{\text {cones }}+V_{\text {middle }}=\frac{5 \pi}{9 \sqrt{3}}+\frac{4 \pi}{9 \sqrt{3}}=\frac{\pi}{\sqrt{3}} .
$$

