1. For all a and b, let $a \boldsymbol{\&} b=3 a+2 b+1$. Compute c such that $(2 c) \boldsymbol{\&}(5(c+3))=60$.

Answer: $\frac{3}{2}$
Solution: Since

$$
\begin{aligned}
(2 c) \boldsymbol{\ell}(5 \boldsymbol{\ell}(c+3)) & =(2 c) \boldsymbol{\ell}(3(5)+2(c+3)+1) \\
& =(2 c) \boldsymbol{\ell}(2 c+22) \\
& =3(2 c)+2(2 c+22)+1 \\
& =10 c+45
\end{aligned}
$$

we require $10 c+45=60$, so $c=\frac{3}{2}$.
2. Suppose that $(i-1)^{11}$ is a root of the quadratic $x^{2}+A x+B$ for integers A and B, where $i=\sqrt{-1}$. Compute the value of $A+B$.
Answer: 1984
Solution: Recall $\operatorname{cis}(\theta)=\cos \theta+i \sin \theta$. By Euler's formula,

$$
(i-1)^{11}=(\sqrt{2} \cdot \operatorname{cis}(3 \pi / 4))^{11}=2^{11 / 2} \cdot \operatorname{cis}(\pi / 4)=32+32 i
$$

Because A and B are real, it follows that $x^{2}+A x+B$ has roots $32 \pm 32 i$ since the complex conjugate must also be a root. By Vieta's formulas, $A=-64$ and $B=2048$, so $A+B=1984$.
3. Tej writes $2,3, \ldots, 101$ on a chalkboard. Every minute he erases two numbers from the board, x and y, and writes $x y /(x+y-1)$. If Tej does this for 99 minutes until only one number remains, what is its maximum possible value?
Answer: $\frac{101}{100}$
Solution: Let the numbers at any given time be represented by $\left\{a_{i}\right\}$; for instance, initially, $a_{1}=2, a_{2}=3, \ldots, a_{100}=101$. For each i, let $b_{i}=\left(1-a_{i}^{-1}\right)^{-1}$. This yields $a_{i}=\left(1-b_{i}^{-1}\right)^{-1}$ and $a_{j}=\left(1-b_{j}^{-1}\right)^{-1}$ which imply

$$
\begin{aligned}
\frac{a_{i} a_{j}}{a_{i}+a_{j}-1} & =\left(a_{i}^{-1}+a_{j}^{-1}-\left(a_{i} a_{j}\right)^{-1}\right)^{-1} \\
& =\left(\left(1-b_{i}^{-1}\right)+\left(1-b_{j}^{-1}\right)-\left(1-b_{i}^{-1}\right)\left(1-b_{j}^{-1}\right)\right)^{-1} \\
& =\left(1-\left(b_{i} b_{j}\right)^{-1}\right)^{-1}
\end{aligned}
$$

In particular, $\prod b_{i}$ is invariant and Tej's final number is

$$
\left(1-\prod_{i} b_{i}^{-1}\right)^{-1}=\left(1-\prod_{i}\left(1-a_{i}^{-1}\right)\right)^{-1}=\left(1-\prod_{i=1}^{100} \frac{i}{i+1}\right)^{-1}=\frac{101}{100}
$$

