1. Define an operation \diamond as $a \diamond b=12 a-10 b$. Compute the value of $((((20 \diamond 22) \diamond 22) \diamond 22) \diamond 22)$.

Answer: 20

Solution: We compute $20 \diamond 22=12(20)-10(22)=20$. Thus, we can replace every instance of $20 \diamond 22$ with 20 :

$$
\begin{aligned}
((((20 \diamond 22) \diamond 22) \diamond 22) \diamond 22) & =(((20 \diamond 22) \diamond 22) \diamond 22) \\
& =((20 \diamond 22) \diamond 22) \\
& =20 \diamond 22 \\
& =20 .
\end{aligned}
$$

2. The equation

$$
4^{x}-5 \cdot 2^{x+1}+16=0
$$

has two integer solutions for x. Find their sum.
Answer: 4
Solution: Define $y=2^{x}$. Then our equation can be rewritten as

$$
y^{2}-10 y+16=(y-2)(y-8)=0 .
$$

This gives $y=2$ or $y=8$, which means $x=1$ or $x=3$. Therefore, the sum of the solutions for x is 4 .
3. Suppose we have four real numbers a, b, c, d such that a is nonzero, a, b, c form a geometric sequence, in that order, and b, c, d form an arithmetic sequence, in that order. Compute the smallest possible value of $\frac{d}{a}$. (A geometric sequence is one where every succeeding term can be written as the previous term multiplied by a constant, and an arithmetic sequence is one where every succeeeding term can be written as the previous term added to a constant.)
Answer: $-\frac{1}{8}$
Solution: Let r be the ratio in the geometric sequence, so that $b=a r$ and $c=a r^{2}$. Since $d-c=c-b$, we have $d=2 c-b=a \cdot\left(2 r^{2}-r\right)$. The minimum of $\frac{d}{a}=2 r^{2}-r$ occurs at $r=-\frac{-1}{2 \cdot 2}=\frac{1}{4}$, with value $2 \cdot\left(\frac{1}{4}\right)^{2}-\frac{1}{4}=-\frac{1}{8}$.
4. Find all real x such that

$$
\lfloor x\lceil x\rceil\rfloor=2022 .
$$

Express your answer in interval notation. (Here, $\lfloor m\rfloor$ is defined as the greatest integer less than or equal to m. For example, $\lfloor 3\rfloor=3$ and $\lfloor-4.25\rfloor=-5$. In addition, $\lceil m\rceil$ is defined as the least integer greater than or equal to m. For example, $\lceil 2\rceil=2$ and $\lceil-3.25\rceil=-3$.)
Answer: $\left[\frac{674}{15}, \frac{2023}{45}\right)$
Solution: Suppose x is positive. Recognize that $44^{2}<2022<45^{2}$, which implies we have $44<x<45$. Then, we see $\lceil x\rceil=45$ which gives $\frac{2022}{45} \leq x=\frac{674}{15} \leq x$. To have an upperbound for $\lfloor 45 x\rfloor=2022$, we need $x<\frac{2023}{45}$ since any larger x will have the floor yielding 2023, violating our condition.

Suppose x is negative. Using the same bounding from above, we see that if a solution were to exist, it must abide by $-45<x<-44$. The $x<-44$ means $\lceil x\rceil=-44$ which forces $x<-\frac{2022}{44}$ which violates the condition that $-45<x$.

Hence, the only solution is $x \in\left[\frac{674}{15}, \frac{2023}{45}\right)$.
5. For real numbers B, M, and T, we have $B^{2}+M^{2}+T^{2}=2022$ and $B+M+T=72$. Compute the sum of the minimum and maximum possible values of T.

Answer: 48

Solution: From the second equation, we have that $B+M=72-T$. Note that $B M \leq \frac{(B+M)^{2}}{4}$ by AM-GM (or by rearranging $(B-M)^{2} \geq 0$), so:

$$
B^{2}+M^{2}=B^{2}+M^{2}+2 B M-2 B M \geq(B+M)^{2}-\frac{(B+M)^{2}}{2}=\frac{(B+M)^{2}}{2}=\frac{(72-T)^{2}}{2}
$$

Utilizing the first equation, we now have $\frac{(72-T)^{2}}{2}+T^{2} \leq 2022$. Rearranging this inequality, we get $3 T^{2}-144 T+5184 \leq 4044$. Dividing both sides by 3 and then factoring yields $(T-10)(T-38) \leq 0$, which implies that $10 \leq T \leq 38$. Thus, the minimum possible value of T is 10 and the maximum possible value of T is 38 . Their sum is 48. Indeed, we find that the triples $(B, M, T)=$ $(17,17,38)$ and $(B, M, T)=(31,31,10)$ are solutions. As a remark, notice that T is minimized and maximized when $B=M$.
6. The degree-6 polynomial f satisfies $f(7)-f(1)=1, f(8)-f(2)=16, f(9)-f(3)=81$, $f(10)-f(4)=256$ and $f(11)-f(5)=625$. Compute $f(15)-f(-3)$.
Answer: 6723
Solution: Note that $g(x)=f(x+6)-f(x)-x^{4}$ is a degree- 5 polynomial whose roots are $x=1,2,3,4,5$, so $g(x)=C(x-1)(x-2)(x-3)(x-4)(x-5)$ for some constant C and $f(x+6)-f(x)=g(x)+x^{4}$. Then we have:

$$
\begin{aligned}
f(15)-f(-3) & =(f(15)-f(9))+(f(9)-f(3))+(f(3)-f(-3)) \\
& =\left(g(9)+9^{4}\right)+81+\left(g(-3)+(-3)^{4}\right) \\
& =\left(9^{4}+2 \cdot 3^{4}\right)+(C(9-1)(9-2)(9-3)(9-4)(9-5) \\
& +C(-3-1)(-3-2)(-3-3)(-3-4)(-3-5)) \\
& =6723+C \cdot(8 \cdot 7 \cdot 6 \cdot 5 \cdot 4+(-4) \cdot(-5) \cdot(-6) \cdot(-7) \cdot(-8)) \\
& =6723+0=6723 .
\end{aligned}
$$

7. Let r, s, and t be the distinct roots of $x^{3}-2022 x^{2}+2022 x+2022$. Compute

$$
\frac{1}{1-r^{2}}+\frac{1}{1-s^{2}}+\frac{1}{1-t^{2}} .
$$

Answer: $\frac{2025}{2023}$
Solution: We can express

$$
\frac{1}{1-r^{2}}+\frac{1}{1-s^{2}}+\frac{1}{1-t^{2}}=\frac{1}{2}\left(\frac{1}{1+r}+\frac{1}{1+s}+\frac{1}{1+t}\right)+\frac{1}{2}\left(\frac{1}{1-r}+\frac{1}{1-s}+\frac{1}{1-t}\right) .
$$

We compute each subsum. First, note that the polynomial with roots $1+r, 1+s, 1+t$ is

$$
(x-1)^{3}-2022(x-1)^{2}+2022(x-1)+2022=x^{3}-2025 x^{2}+6069 x-2023,
$$

so

$$
\frac{1}{1+r}+\frac{1}{1+s}+\frac{1}{1+t}=-\frac{6069}{-2023}=3 .
$$

Similarly, the polynomial with roots $1-r, 1-s, 1-t$ is

$$
(1-x)^{3}-2022(1-x)^{2}+2022(1-x)+2022=-x^{3}-2019 x^{2}+2019 x+2023,
$$

so

$$
\frac{1}{1-r}+\frac{1}{1-s}+\frac{1}{1-t}=-\frac{2019}{2023},
$$

resulting in our final answer of $\frac{1}{2}\left(3-\frac{2019}{2023}\right)=\frac{2025}{2023}$.
8. Given

$$
\begin{aligned}
x_{1} x_{2} \cdots x_{2022} & =1 \\
\left(x_{1}+1\right)\left(x_{2}+1\right) \cdots\left(x_{2022}+1\right) & =2 \\
& \vdots \\
\left(x_{1}+2021\right)\left(x_{2}+2021\right) \cdots\left(x_{2022}+2021\right) & =2^{2021},
\end{aligned}
$$

compute

$$
\left(x_{1}+2022\right)\left(x_{2}+2022\right) \cdots\left(x_{2022}+2022\right) .
$$

Answer: $2022!+2^{2022}-1$
Solution: Define

$$
P(t)=\left(x_{1}+t\right)\left(x_{2}+t\right) \cdots\left(x_{2022}+t\right)
$$

We are effectively given 2022 points from the problem statement and so interpolation only guarantees us a 2021 degree polynomial. From interpolation, we get

$$
P(t)=\sum_{i=0}^{2021}\binom{t}{i}
$$

Suppose $Q(t)$ is the polynomial representing the value we wish to compute. We see that $Q(t)$ is monic and $Q(t)-P(t)$ must have 2022 roots (since they must agree on 2022 points) but $P(t)$ only has 2021 roots at most when interpolating. To account for this, we can rewrite $P(t)$ as

$$
P(t)=(t-0)(t-1) \cdots(t-2021)+\sum_{i=0}^{2021}\binom{t}{i} .
$$

The new offset term ensures we have 2022 roots and utilizes the property of Q being monic. From here, we see $P(2022)=2022!+2^{2022}-1$.
9. We define a sequence $x_{1}=\sqrt{3}, x_{2}=-1, x_{3}=2-\sqrt{3}$, and for all $n \geq 4$

$$
\left(x_{n}+x_{n-3}\right)\left(1-x_{n-1}^{2} x_{n-2}^{2}\right)=2 x_{n-1}\left(1+x_{n-2}^{2}\right) .
$$

Suppose m is the smallest positive integer for which x_{m} is undefined. Compute m.
Answer: 10

Solution: We rewrite the recurrence to isolate

$$
x_{n}+x_{n-3}=\frac{2 x_{n-1}\left(1+x_{n-2}^{2}\right)}{1-x_{n-1}^{2} x_{n-2}^{2}}
$$

The recurrence relation reminds us of the tangent angle addition formula, which is given by $\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b}$, as it has the product of two tangents in the denominator. The squares in the denominator also motivate us to look at $\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b}$. Note that if we add these two expressions together, we get

$$
\begin{aligned}
& \tan (a+b)+\tan (a-b) \\
&= \frac{\tan a+\tan b}{1-\tan a \tan b}+\frac{\tan a-\tan b}{1+\tan a \tan b} \\
& \quad= \frac{(\tan a+\tan b)(1+\tan a \tan b)+(\tan a-\tan b)(1-\tan a \tan b)}{1-\tan ^{2} a \tan ^{2} b} \\
& \quad=\frac{\tan a+\tan b+\tan ^{2} a \tan b+\tan a \tan ^{2} b+\tan a-\tan b-\tan ^{2} a \tan b+\tan a \tan ^{2} b}{1-\tan ^{2} a \tan 2} \\
& \quad=\frac{2 \tan a+2 \tan a \tan ^{2} b}{1-\tan ^{2} a \tan ^{2} b}
\end{aligned}
$$

Note that if we set $x_{n}=\tan (a+b), x_{n-1}=\tan a, x_{n-2}=\tan b$, and $x_{n-3}=\tan (a-b)$, we obtain our recurrence relation. Now all we must do is find the values of a and b. Thus, $x_{1}=\tan \left(4 \cdot \frac{\pi}{12}\right), x_{2}=\tan \left(9 \cdot \frac{\pi}{12}\right)$, and $x_{3}=\tan \left(13 \cdot \frac{\pi}{12}\right)$. Since $\tan x$ is undefined at $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$, we would like to find the first term in the sequence $4,9,13, \ldots$ (where the next term is the sum of the two previous terms) that is equivalent to $6(\bmod 24)$ or $18(\bmod 24)$. Listing out terms gives us $4,9,13,22,35,57,92,149,241,390$. Since $390 \equiv 6(\bmod 24)$, the first m is 10 .
10. Let p, q, and r be the roots of the polynomial $f(t)=t^{3}-2022 t^{2}+2022 t-337$. Given

$$
\begin{aligned}
& x=(q-1)\left(\frac{2022-q}{r-1}+\frac{2022-r}{p-1}\right) \\
& y=(r-1)\left(\frac{2022-r}{p-1}+\frac{2022-p}{q-1}\right) \\
& z=(p-1)\left(\frac{2022-p}{q-1}+\frac{2022-q}{r-1}\right)
\end{aligned}
$$

compute $x y z-q r x-r p y-p q z$.
Answer: - 674
Solution: What is unsatisfying about this is the nonhomogeneity of $p-1$, and the key realization to fixing this is to note that the quadratic and linear coefficients in the polynomial are identical, i.e. $q r+r p+p q=p+q+r \Rightarrow p(q-1)+q(r-1)+r(p-1)=0$. Therefore, we now can denote with dimensionless variables $a, b, c, p(q-1), q(r-1)$, and $r(p-1)$ respectively, refactoring the equations into

$$
\begin{aligned}
& p x=a\left(\frac{p q+q r}{b}+\frac{q r+r p}{c}\right)=-(r p+p q)+a S \\
& q y=b\left(\frac{q r+r p}{c}+\frac{r p+p q}{a}\right)=-(p q+q r)+b S \\
& r z=c\left(\frac{r p+p q}{a}+\frac{p q+q r}{b}\right)=-(q r+r p)+c S
\end{aligned}
$$

where $a+b+c=0$ and $S=\frac{r p+p q}{a}+\frac{p q+q r}{b}+\frac{q r+r p}{c}$. If we denote $i=q r, j=r p, k=p q$, and $x^{\prime}=-p x=(j+k)-a S$ with y^{\prime} and z^{\prime} similarly, then we can rewrite the target equation as $-\frac{1}{p q r}\left(x^{\prime} y^{\prime} z^{\prime}-\left(i^{2} x^{\prime}+j^{2} y^{\prime}+k^{2} z^{\prime}\right)\right)$.
Now, note that if we let $g(x, y, z)=x y z-\left(i^{2} x+j^{2} y+k^{2} z\right)$, then we can see that $g(j+k, k+$ $i, i+j)=2 i j k$. Then we have

$$
\begin{aligned}
& g\left(x^{\prime}, y^{\prime}, z^{\prime}\right)-g(j+k, k+i, i+j) \\
= & (j+k-a S)(k+i-b S)(i+j-c S)-(j+k)(k+i)(i+j)+\sum_{c y c} i^{2} a S \\
= & -\sum_{c y c}(k+i)(i+j) a S+\sum_{c y c}(j+k) b c S^{2}-a b c S^{3}+\sum_{c y c} i^{2} a S \\
= & a b c S^{3}\left(\frac{1}{S} \sum_{c y c} \frac{j+k}{a}-1\right) \\
= & 0
\end{aligned}
$$

meaning we have $g\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=g(j+k, k+i, i+j)=2 i j k$. Finally, we have

$$
\begin{aligned}
x y z-(q r x+r p y+p q z) & =-\frac{1}{p q r}\left(x^{\prime} y^{\prime} z^{\prime}-\left(i^{2} x^{\prime}+j^{2} y^{\prime}+k^{2} z^{\prime}\right)\right) \\
& =-\frac{1}{p q r} g\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& =-\frac{1}{p q r} \cdot 2 i j k \\
& =-2 p q r \\
& =-674
\end{aligned}
$$

