1. Regular hexagon NOSAME with side length 1 and square UDON are drawn in the plane such that UDON lies outside of NOSAME. Compute [SAND] + [SEND], the sum of the areas of quadrilaterals SAND and SEND.

Answer: $\frac{3+3\sqrt{3}}{2}$

Solution:

We know [SAND] = [SAN] + [SDN] = [SEN] + [SDN] = [SEND]. So, our answer is $2 \cdot [SAND] = 2 \cdot ([SANO] + [DNO] + [DOS])$. We know $[DNO] = \frac{1}{2}$. We can calculate [SANO]and [SOD] by calculating the length of the altitudes altitudes from S to OA and NA to be $\frac{1}{2}$ and $\frac{\sqrt{3}}{2}$, respectively. So, our desired sum becomes $2 \cdot \left(\frac{3\sqrt{3}}{4} + \frac{1}{2} + \frac{1}{4}\right) = \left|\frac{3+3\sqrt{3}}{2}\right|$

2. Let $\triangle A_0 B_0 C_0$ be an equilateral triangle with area 1, and let A_1, B_1, C_1 be the midpoints of $\overline{A_0B_0}$, $\overline{B_0C_0}$, and $\overline{C_0A_0}$, respectively. Furthermore, set A_2 , B_2 , C_2 as the midpoints of segments $\overline{A_0A_1}$, $\overline{B_0B_1}$, and $\overline{C_0C_1}$ respectively. For $n \ge 1$, A_{2n+1} is recursively defined as the midpoint of $\overline{A_{2n}A_{2n-1}}$, and A_{2n+2} is recursively defined as the midpoint of $\overline{A_{2n+1}A_{2n-1}}$. Recursively define B_n and C_n the same way. Compute the value of $\lim_{n\to\infty} [A_n B_n C_n]$, where $[A_n B_n C_n]$ denotes the area of triangle $\triangle A_n B_n C_n$.

Answer: $\frac{7}{25}$

Solution: In order to find this area, we first find the limit of the ratio $r = \frac{A_0 A_n}{A_0 B_0}$. Observe that

$$\lim_{n \to \infty} r = \frac{1}{A_0 B_0} \left(A_0 B_0 - A_1 B_0 - A_2 A_1 + A_3 A_2 + A_4 A_3 - \cdots \right)$$
$$= 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{8} + \frac{1}{16} - \frac{1}{32} - \frac{1}{64} + \frac{1}{128} + \frac{1}{256} - \cdots = \frac{2}{5},$$
$$\lim_{n \to \infty} \left[A_n B_n C_n \right] = 1 - 3 \left(\lim_{n \to \infty} r \right) \left(1 - \lim_{n \to \infty} r \right) \left[A_0 B_0 C_0 \right] = 1 - 3 \cdot \frac{2}{5} \cdot \frac{3}{5} = \boxed{\frac{7}{25}} \text{ by}$$

so we have symmetry.

3. Right triangle $\triangle ABC$ with its right angle at B has angle bisector \overline{AD} with D on \overline{BC} , as well as altitude \overline{BE} with E on \overline{AC} . If $\overline{DE} \perp \overline{BC}$ and AB = 1, compute AC.

Answer: $\frac{1+\sqrt{5}}{2}$

Solution: Note that $\angle BAD = \angle ADE$ because of parallel lines. Since $\angle BAD = \angle DAE$, $\triangle ADE$ is isosceles. Let AE = DE = x and $\angle BAC = \theta$. Then $\triangle BAE$ gives us $BE = x \tan \theta$ and $\triangle BED$ gives us $BE = \frac{x}{\sin \theta}$ since $\angle EBD = \angle BAC$. Thus, $\sin \theta \cdot \tan \theta = 1$, so we simplify to $\sin^2 \theta = \cos \theta$. Plugging $\sin^2 \theta = 1 - \cos^2 \theta$ gives us $\cos^2 \theta + \cos \theta - 1 = 0$. Now we can solve the quadratic to get $\cos \theta = \frac{-1 + \sqrt{5}}{2}$, discarding the negative solution as $\angle BAC$ is acute. Thus,

$$AC = \boxed{\frac{1+\sqrt{5}}{2}}.$$