1. Shreyas has a rectangular piece of paper $A B C D$ such that $A B=20$ and $A D=21$. Given that Shreyas can make exactly one straight-line cut to split the paper into two pieces, compute the maximum total perimeter of the two pieces.
Answer: 140

Solution:

The total perimeter increases by twice the length of the cut made. The maximum length of a cut is a diagonal of the rectangle $B D=\sqrt{20^{2}+21^{2}}=29$, so our answer is $2 \cdot 20+2 \cdot 21+2 \cdot 29=140$.
2. Compute the area of the smallest triangle which can contain six congruent, non-overlapping unit circles.
Answer: $12+7 \sqrt{3}$

Solution:

The optimal strategy is to stack the circles in a pyramid as shown in the diagram above. We can construct a rectangle by connecting the centers of circles O_{4} and O_{6} with a segment having its midpoint at the center of O_{5}. Then, we can complete the rectangle by connecting O_{4} and O_{6} to the base $\overline{A B}$. Note that because each circle has radius 1 , the rectangle has a height of 1 and a length of 4 . This process also creates two $30-60-90$ triangles with height 1 . Therefore, we can calculate the length of $\overline{A B}$ to be $4+2 \sqrt{3}$. So, the area of $\triangle A B C$ is $\frac{(4+2 \sqrt{3})^{2} \sqrt{3}}{4}=12+7 \sqrt{3}$.
3. In quadrilateral $A B C D$, suppose that $\overline{C D}$ is perpendicular to $\overline{B C}$ and $\overline{D A}$. Point E is chosen on segment $\overline{C D}$ such that $\angle A E D=\angle B E C$. If $A B=6, A D=7$, and $\angle A B C=120^{\circ}$, compute $A E+E B$.
Answer: $2 \sqrt{37}$
Solution: Since $\angle A B C=120^{\circ}, \angle B A D=60^{\circ}$, so $B C=4$. Let A^{\prime} and B^{\prime} be the reflection of A and B over the segment $\overline{C D}$, respectively. Then note that $A E+E B=A B^{\prime}$. Letting F be the projection of B^{\prime} onto $A A^{\prime}$, we have that $F B^{\prime}=\sqrt{6^{2}-3^{2}}=3 \sqrt{3}$, and $F A=A^{\prime} A-A^{\prime} F=11$, so $A E+E B=\sqrt{11^{2}+(3 \sqrt{3})^{2}}=2 \sqrt{37}$.
4. An equilateral polygon has unit side length and alternating interior angle measures of 15° and 300°. Compute the area of this polygon.
Answer: $2+2 \sqrt{2}-2 \sqrt{3}$
Solution: The average interior angle measure is $\frac{15^{\circ}+300^{\circ}}{2}=\frac{315^{\circ}}{2}$, so the average exterior angle measure is $\frac{45^{\circ}}{}{ }^{\circ}$, indicating that this polygon has 16 sides. Guided by this, we can then draw the polygon, as follows.

The given angles tell us that the polygon should look like an 8-pointed star. Upon drawing the shape, we find that the outer 8 points form a regular octagon, and when we draw the octagon, we find that the 8 triangles we subtract off to form the 8 pointed star are all equilateral triangles! So, the octagon also has unit side length. The area of the octagon can be taken by extending side lengths to form a square, then subtract off the four isosceles right triangles; this gives an area of $(\sqrt{2}+1)^{2}-4 \cdot \frac{1}{4}=2 \sqrt{2}+2$. The area of the 8 pointed star is $2 \sqrt{2}+2-8 \cdot \frac{\sqrt{3}}{4}=2+2 \sqrt{2}-2 \sqrt{3}$.
5. Let circles ω_{1} and ω_{2} intersect at P and Q. Let the line externally tangent to both circles that is closer to Q touch ω_{1} at A and ω_{2} at B. Let point T lie on segment $\overline{P Q}$ such that $\angle A T B=90^{\circ}$. Given that $A T=6, B T=8$, and $P T=4$, compute $P Q$.
Answer: $\frac{56}{9}$
Solution: Let $\overline{P Q}$ intersect $\overline{A B}$ at M. By Power of a Point, $M A^{2}=M Q \cdot M P=M B^{2}$, thus $M A=M B$. By the Pythagorean Theorem, we get $A B=10$. So, $A M=B M=5$. Also, since M is the midpoint of the hypotenuse of $\triangle A T B, M T=5$. So, we have that $M P=M T+T P=9$. Plugging this into the Power of a Point equation we had earlier gives $5^{2}=M Q \cdot 9 \Longrightarrow M Q=\frac{25}{9}$.
So, $P Q=M P-M Q=9-\frac{25}{9}=\frac{56}{9}$.
6. Consider 27 unit-cubes assembled into one $3 \times 3 \times 3$ cube. Let A and B be two opposite corners of this large cube. Remove the one unit-cube not visible from the exterior, along with all six unit-cubes in the center of each face. Compute the minimum distance an ant has to walk along the surface of the modified cube to get from A to B.

Answer: $\sqrt{41}$

Solution:

On a normal cube, the ant would like to walk on a straight line on the net of the cube. In this special cube with holes in the middle, the ant would ideally want to travel as spacially close to the space diagonal as possible while still traveling in a straight line on the net. To do this, it can travel in two separate straight line segments from A to P to B, where P is the midpoint of the edge it lies on. By symmetry, notice how the path from A to P is the same length as the path from P to B. So, our answer is just twice the length of the path from A to P. We can unfold the net as shown below.

Here, we can see that the length of the path from A to P is $\sqrt{2^{2}+\frac{5}{2}^{2}}=\frac{\sqrt{41}}{2}$. So, our answer is $2 \cdot \frac{\sqrt{41}}{2}=\sqrt{41}$.
7. The line l passes through vertex B and the interior of regular hexagon $A B C D E F$. If the distances from l to the vertices A and C are 7 and 4 , respectively, compute the area of hexagon $A B C D E F$.

Answer: $74 \sqrt{3}$

Solution: We have the following diagram.

Consider the 6 lines created when l is rotated about the center of the hexagon in 60° increments, and label them l_{A}, l_{B}, \ldots, and l_{F}, where l_{P} passes through vertex P (note that $l=l_{B}$). Let A^{\prime} be the intersection of l_{A} and l_{B}, let B^{\prime} be the intersection of l_{B} and l_{C}, and define similarly $C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$. Then, by symmetry, $\triangle A A^{\prime} B \cong \triangle B B^{\prime} C \cong \ldots \cong \triangle F F^{\prime} A$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ is a regular hexagon, so $\angle A A^{\prime} B=\angle B B^{\prime} C=\ldots=\angle F F^{\prime} A=60^{\circ}$. Then, the hexagon is partitioned into six congruent triangles and a smaller regular hexagon, so we will find their side lengths to get their areas.
Let P be the foot of the altitude from A onto l_{B} and Q be the foot of the altitude from C onto l_{B}, so that $A P=7$ and $C Q=4$. Then $\triangle A P A^{\prime}$ and $\triangle C Q B^{\prime}$ are 30-60-90 triangles, so $A A^{\prime}=\frac{2}{\sqrt{3}} \cdot A P=\frac{14}{\sqrt{3}}$ and $C B^{\prime}=\frac{2}{\sqrt{3}} \cdot C Q=\frac{8}{\sqrt{3}}$. Since $\triangle A A^{\prime} B \cong \triangle B B^{\prime} C, B A^{\prime}=C B^{\prime}=\frac{8}{\sqrt{3}}$, and since $\triangle B B^{\prime} C \cong \triangle F F^{\prime} A, F^{\prime} A^{\prime}=A A^{\prime}-A F^{\prime}=A A^{\prime}-C B^{\prime}=\frac{14}{\sqrt{3}}-\frac{8}{\sqrt{3}}=2 \sqrt{3}$. Then by the sine area formula, the area of $\triangle A A^{\prime} B$ is $\frac{1}{2}\left(A A^{\prime}\right)\left(B A^{\prime}\right) \sin 60^{\circ}=\frac{28}{\sqrt{3}}$. We also know that the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ is $6 \cdot \frac{\left(F A^{\prime}\right)^{2} \sqrt{3}}{4}=18 \sqrt{3}$, so the area of $A B C D E F$ is $6\left[\triangle A A^{\prime} B\right]+\left[A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}\right]=$ $56 \sqrt{3}+18 \sqrt{3}=74 \sqrt{3}$.
8. Let $\triangle A B C$ be a triangle with $A B=15, A C=13, B C=14$, and circumcenter O. Let l be the line through A perpendicular to segment $\overline{B C}$. Let the circumcircle of $\triangle A O B$ and the circumcircle of $\triangle A O C$ intersect l at points X and Y (other than A), respectively. Compute the length of $\overline{X Y}$.

Answer: $\frac{112}{15}$

Solution: Let D be the foot of the altitude from A to $\overline{B C}$. Let H^{\prime} be the intersection of $\overline{A D}$ with the circumcircle of triangle $\triangle A B C$. Using directed angles, we know $\measuredangle X Y O=\measuredangle A Y O=$ $\measuredangle A C O=\measuredangle O A C=\measuredangle B A H^{\prime}=\measuredangle B C H^{\prime}$. Similarly, $\measuredangle Y X O=\measuredangle A X O=\measuredangle A B O=\measuredangle O A B=$ $\measuredangle C A H^{\prime}=\angle C B H^{\prime}$. So, we know that $\triangle H^{\prime} B C$ is similar to $\triangle O X Y$. We can calculate the similarity ratio by calculating the ratio of the lengths of the altitudes. Let M be the midpoint of $\overline{B C}$. We can calculate $D C=5, B D=9$, and $A D=12$. We know the altitude from O to $\overline{X Y}$ has length $M C-D C=7-5=2$. We can calculate the altitude from H^{\prime} to $\overline{B C}$ using Power of a Point to be $\frac{5 \cdot 9}{12}=\frac{15}{4}$. So, using the similarity ratio, $X Y=\frac{2}{\frac{15}{4}} \cdot 14=\frac{112}{15}$.
9. Let $A B C D$ be a convex quadrilateral such that $\triangle A B C$ is equilateral. Let P be a point inside the quadrilateral such that $\triangle A P D$ is equilateral and $\angle P C D=30^{\circ}$. Given that $C P=2$ and $C D=3$, compute the area of the triangle formed by P, the midpoint of segment $\overline{B C}$, and the midpoint of segment $\overline{A B}$.
Answer: $\frac{5 \sqrt{3}+12}{16}$
Solution: Since $A B=A C, A P=A D$, and $\angle B A P=\angle C A D, \triangle A P B$ is congruent to $\triangle A D C$, so $B P=3$. Also $\angle B P C=360^{\circ}-\angle A P B-\angle A P C=360^{\circ}-\angle A P C-\angle A D C=\angle D A P+$ $\angle D C P=90^{\circ}$, so $\angle B P C$ is right. The side length of $\triangle A B C$ is then $\sqrt{2^{2}+3^{2}}=\sqrt{13}$. Let M be the midpoint of $\overline{B C}$ and N be the midpoint of $\overline{A B}$. We then have $M N=M P=\frac{\sqrt{13}}{2}$. Now, it simply suffices to find $\sin (\angle N M P)$. This is the same as

$$
\begin{aligned}
\sin \left(180^{\circ}-\angle B M N-\angle P M C\right) & =\sin \left(120^{\circ}-\angle P M C\right) \\
& =\sin \left(120^{\circ}\right) \cos (\angle P M C)-\cos \left(120^{\circ}\right) \sin (\angle P M C) .
\end{aligned}
$$

We can calculate $\sin (\angle P M C)=\sin (2 \angle P B C)=2 \sin (\angle P B C) \cos (\angle P B C)=2 \cdot \frac{2}{\sqrt{13}} \cdot \frac{3}{\sqrt{13}}=\frac{12}{13}$.

From this we get $\cos (\angle P M C)=\frac{5}{13}$. Thus, our answer is

$$
\frac{1}{2} \cdot\left(\frac{\sqrt{13}}{2}\right)^{2} \cdot\left(\frac{\sqrt{3}}{2} \cdot \frac{5}{13}+\frac{1}{2} \cdot \frac{12}{13}\right)=\frac{13}{8} \cdot \frac{5 \sqrt{3}+12}{26}=\frac{5 \sqrt{3}+12}{16}
$$

10. Consider $\triangle A B C$ such that $C A+A B=3 B C$. Let the incircle ω touch segments $\overline{C A}$ and $\overline{A B}$ at E and F, respectively, and define P and Q such that segments $\overline{P E}$ and $\overline{Q F}$ are diameters of ω. Define the function \mathcal{D} of a point K to be the sum of the distances from K to P and Q (i.e. $\mathcal{D}(K)=K P+K Q)$. Let W, X, Y, and Z be points chosen on lines $\overleftrightarrow{B C}, \overleftrightarrow{C E}, \overleftrightarrow{E F}$, and $\overleftrightarrow{F B}$, respectively. Given that $B C=\sqrt{133}$ and the inradius of $\triangle A B C$ is $\sqrt{14}$, compute the minimum value of $\mathcal{D}(W)+\mathcal{D}(X)+\mathcal{D}(Y)+\mathcal{D}(Z)$.
Answer: $24 \sqrt{2}$
Solution: Define I to be the incenter, r to be the inradius, I_{a}, I_{b}, I_{c} to be the A, B, C-excenters respectively, and r_{a} to be the A-exradius. Also, let M be the midpoint of $\overline{E F}$. Then, we have $\frac{r_{a}}{r}=\frac{b+c+a}{b+c-a}=2$, meaning that the exradius is twice the inradius. By homothety, this means that I is the midpoint of $\overline{A I_{a}}$, and since I is the orthocenter of $\triangle I_{a} I_{b} I_{c}, I$ is also the midpoint of the altitude $\overline{A I_{a}}$. Let D be the point of tangency of ω to $\overline{B C}$. Then, note that since I is the circumcenter of $\triangle D E F, I$ is also the orthocenter of the medial triangle of $\triangle D E F$. Since $\triangle D E F$ is homothetic to $\triangle I_{a} I_{b} I_{c}$, the medial triangle is homothetic to $\triangle I_{a} I_{b} I_{c}$ about I, meaning that I must lie on the midpoint of the altitude from M to the D-midline of $\triangle D E F$. However, since $\overline{P Q}$ is the reflection of $\overline{E F}$ over $I, \overleftrightarrow{P Q}$ must contain the D-midline. Then, note that the midpoints B^{\prime} and C^{\prime} of $\overline{D F}$ and $\overline{D E}$, respectively, must lie on this midline. Taking inversion \mathcal{I} about ω, since $\mathcal{I}\left(B^{\prime}\right)=B, \mathcal{I}\left(C^{\prime}\right)=C$, as well as B, C, I, and I_{a} concyclic, we can conclude that P, Q, B, C, I, and I_{a} are concyclic.
Now, let D^{\prime} be the intersection of $\overleftrightarrow{A I}$ and $\overleftrightarrow{B C}$, and let N be the second intersection of the circumcircle of $\triangle P Q D^{\prime}$ and $\overleftrightarrow{B C}$. By directed angles, we have

$$
\measuredangle B N P=\measuredangle D^{\prime} N P=\measuredangle D^{\prime} Q P=\measuredangle Q P D^{\prime}=\measuredangle Q N D^{\prime}=\measuredangle Q N C
$$

Thus, there exists an ellipse with foci P and Q tangent to $\overline{B C}$ at N, since $\mathcal{D}(W)$ is minimal when $W=N$. Now, we prove the following lemma:
Lemma. Given a triangle $\triangle A B C$, there exists a unique ellipse with foci P, and Q tangent to $\overleftrightarrow{B C}, \overleftrightarrow{C A}$, and $\overleftrightarrow{A B}$ if P and Q are isogonal conjugates in $\triangle A B C$

Proof. Given that P, Q are isogonal conjugates in $\triangle A B C$, let D, E, and F be the feet from P to $\overleftrightarrow{B C}, \overleftrightarrow{C A}$, and $\overleftrightarrow{A B}$ respectively, and define X, Y, and Z similarly for Q. Additionally, let M be the midpoint of $P Q$. For a point K on line l that minimizes $P K+K Q$, we have that $P K+K Q=\sqrt{\left(P P^{\prime}+Q Q^{\prime}\right)^{2}+P^{\prime} Q^{\prime 2}}=2 M P^{\prime}=2 M Q^{\prime}$ where P^{\prime} and Q^{\prime} are the feet of P and Q on line l.
It suffices to show that M is the center of both $\odot(D E F)$ and $\odot(X Y Z)$. We have $M D=M X$, $M E=M Y$, and $M F=M Z$ since M lies on the perpendicular bisectors of $\overline{D X}, \overline{E Y}$, and $\overline{F Z}$. We also note that $\overleftrightarrow{A P} \perp \overleftrightarrow{Y Z}$. This is true since

$$
\measuredangle(A P, Y Z)=\measuredangle P A Z+\measuredangle A Z Y=\measuredangle Y A Q+\measuredangle A Q Y=\measuredangle Q Y A=\frac{\pi}{2}
$$

and $A Y Q Z$ is cyclic. Let K be the foot from A to $\overleftrightarrow{Y Z}$, so since $\measuredangle P K Z=\measuredangle P F Z=\frac{\pi}{2}$ and $\measuredangle P K Y=\measuredangle P E Y=\frac{\pi}{2}, P K E Y$ and $P K F Z$ are cyclic.

Then note $A F \cdot A Z=A P \cdot A K=A E \cdot A Y$ meaning that $E F Y Z$ is cyclic. Since M lies on the perpendicular bisectors of $\overline{E Y}$ and $\overline{F Z}, M$ is the circumcenter, and by similar reasoning, M is equidistant from D, E, F, X, Y, and Z. Let this common distance be R. Define T, U, and V as the points on $\overleftrightarrow{B C}, \overleftrightarrow{C A}$, and $\overleftrightarrow{A B}$ such that $P T+T Q, P U+U Q, P V+V Q$ are all minimal. We have $P T+T Q=2 M E=2 R$, and similarly, $P U+U Q=P V+V Q=2 R$. Thus, the ellipse \mathcal{E}, foci P, Q tangent to $\overleftrightarrow{B C}$ must be tangent at T since T minimizes the sum $P T+T Q$. However, since $P T+T Q=P U+U Q=P V+V Q=2 R$, the ellipse passes through U and V. Since the ellipse foci P, Q passing through U, and the ellipse foci P, Q tangent to $\overleftrightarrow{C A}$ are both unique, they must be the same ellipse and thus, \mathcal{E} is tangent to $\overleftrightarrow{C A}$ as well. And by similar reasoning, \mathcal{E} is tangent to $\overleftrightarrow{A B}$ at V.
Finally, to prove uniqueness we simply note that the point K on line l minimizing $P K+K Q$ is unique, and therefore there can only be one possible point of tangency of the ellipse to l. Since an ellipse can be uniquely determined by its foci and major axis, \mathcal{E} must be unique, completing the proof.

Now, note that $\odot\left(B C P Q I I_{a}\right)$ has a center on $\overleftrightarrow{A I}$. Then, let B_{1}, C_{1} be the second intersections of $\odot\left(B C P Q I I_{a}\right)$ with $\overleftrightarrow{A C}$ and $\overleftrightarrow{A B}$ respectively. Thus, B_{1}, C_{1} are the reflections of B, C over $\overleftrightarrow{A I}$ respectively. Now, we have

$$
\begin{aligned}
& \measuredangle A B P=\measuredangle A B_{1} Q=\measuredangle C B_{1} Q=\measuredangle C B Q \\
& \measuredangle A C Q=\measuredangle A C_{1} P=\measuredangle B C_{1} P=\measuredangle B C P
\end{aligned}
$$

so P, Q are isogonal conjugates in $\triangle A B C$. We also have

$$
\begin{aligned}
& \measuredangle A F Q=\measuredangle A F I=\frac{\pi}{2}=\measuredangle E F P \\
& \measuredangle A E P=\measuredangle A E I=\frac{\pi}{2}=\measuredangle F E Q
\end{aligned}
$$

so P and Q are also isogonal conjugates in $\triangle A E F$. Denote \mathcal{E} to be the ellipse of foci P and Q tangent to $\overline{B C}$ at N. By our lemma, \mathcal{E} is also tangent to $\overline{C A}, \overline{A B}$, and $\overline{E F}$. Since P and Q are symmetric about $\overleftrightarrow{A I}, \mathcal{E}$ is as well, meaning the tangency point on $\overline{E F}$ is M. Finally, note that $A E=A F=\frac{b+c-a}{2}=a=B C$. We have

$$
\begin{gathered}
\min (\mathcal{D}(W)+\mathcal{D}(X)+\mathcal{D}(Y)+\mathcal{D}(Z))=4 \mathcal{D}(M)=8 Q M=8 \sqrt{E M^{2}+(2 I M)^{2}} \\
8 \sqrt{E I^{2}+3 I M^{2}}=8 \sqrt{r^{2}+3\left(\frac{r^{2}}{\sqrt{r^{2}+a^{2}}}\right)^{2}}=8 r \sqrt{\frac{4+\frac{a^{2}}{r^{2}}}{1+\frac{a^{2}}{r^{2}}}}=8 \sqrt{14 \cdot \frac{4+\frac{19}{2}}{1+\frac{19}{2}}}=24 \sqrt{2}
\end{gathered}
$$

