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1. Towa has a hand of three different red cards and three different black cards. How many ways
can Towa pick a set of three cards from her hand that uses at least one card of each color?

Answer: 18

Solution: The quickest way is to use complementary counting: using the six cards, Towa has(
6
3

)
= 20 ways to place down a set of three cards. Among these sets, there are two that do not

use at least one card of each color, which are all red cards and all black cards. So, there are
20− 2 = 18 sets in all.

Alternatively, one can label the cards ABCDEF, where ABC are the red cards and DEF are the
black cards, and then list out all of the possibilities.

2. Alice is counting up by fives, starting with the number 3. Meanwhile, Bob is counting down by
fours, starting with the number 2021. How many numbers between 3 and 2021, inclusive, are
counted by both Alice and Bob?

Answer: 101

Solution: We see that 2021 divided by 4 has remainder 1, thus Bob counts all numbers that
leave remainder 1 when divided by 4 (1 mod 4). Alice counts all numbers that leave remainder
3 when divided by 5 (3 mod 5). To be counted by both Alice and Bob, the number must leave
remainder 13 when divided by 20 (13 mod 20). There are 101 such numbers, starting from
20 · 0 + 13 and ending at 20 · 100 + 13.

3. How many distinct sums can be made from adding together exactly 8 numbers that are chosen
from the set {1, 4, 7, 10}, where each number in the set is chosen at least once? (For example,
one possible sum is 1 + 1 + 1 + 4 + 7 + 7 + 10 + 10 = 41.)

Answer: 13

Solution: The small combinations to be summed up allow test-takers to experiment around
with the numbers and find all possible values without trepidation. This solution presents a more
organized approach. Since each number in the set {1, 4, 7, 10} is used at least once, four of the
numbers are predetermined to be 1, 4, 7, and 10. So, the problem is equivalent to that of finding
the number of distinct sums from adding together 5 numbers, without the restriction that each
number is chosen at least once, At the end, we can just add 1+ 4+ 7+ 10 = 22 to each of these
sums to get back to the original problem.

For this alternate problem, the smallest sum possible is 4 · 1 = 4, and the largest sum possible
is 4 · 10 = 40. Since each of the numbers in the set {1, 4, 7, 10} leave a remainder of 1 when
divided by 3, every possible sum must leave the same remainder as 4 does when divided by 3,
which is 1. We can increase the sum by 3 at a time by changing a 1 to a 4, a 4 to a 7, or a 7
to a 10, until all numbers in the sum are 10 - this means that every number between 4 and 40
that leaves a remainder of 1 when divided by 3 is attainable. Therefore, the number of possible
sums is 40−4

3 + 1 = 13 .

4. Derek and Julia are two of 64 players at a casual basketball tournament. The players split up
into 8 teams of 8 players at random. Each team then randomly selects 2 captains among their
players. What is the probability that both Derek and Julia are captains?

Answer: 5
84

Solution: The probability that both Derek and Julia are captains actually differs based on
whether they are on the same team or different teams, so we will need to account for these cases.
Fix Derek on a certain team. Then the probability that Julia is also on that team is 7

63 = 1
9 ,
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since there are only 7 slots left on that team. If they are on the same team, then there is a
2
8 · 1

7 = 1
28 probability that they are both captains. If they are on different teams, then there is

a 2
8 · 2

8 = 1
16 probability that they are both captains. The final probability that they are both

captains is 1
9 · 1

28 + 8
9 · 1

16 =
5

84
.

5. How many three-digit numbers abc have the property that when it is added to cba, the number
obtained by reversing its digits, the result is a palindrome? (Note that cba is not necessarily a
three-digit number since before reversing, c may be equal to 0.)

Answer: 233

Solution: Let our three-digit number be abc = 100a+10b+ c. When adding this to cba, we get

(100a+ 10b+ c) + (100c+ 10b+ a) = 101(a+ c) + 20b.

Now we casework on the number of digits of this number:

Case 1: The number has three digits. Then we must have a + c ≤ 9, and for it to be a
palindrome the hundreds digit must equal the units digit, which is a + c. Thus the hundreds
digit is a + c and we must have b ≤ 4. Then 20b gives us the middle digit of the number, and
101(a+ c) gives us equal units and hundreds digits, so counting gives us

(
10
2

)
= 45 ways to pick

(a, c) and 5 ways to pick b, for a total of 45 · 5 = 225.

Case 2: The number has four digits. Since abc, cba are three-digit numbers, their sum
cannot exceed 2(999) = 1998, which means the thousands digit is 1. Since our number is a
palindrome then the units digits is 1 as well. The only (a, c) that result in a units digit of 1 is
when a + c = 1, 11, but a + c = 1 can never yield a four-digit number. Thus a + c = 11, and
then looking at the possible values of b gives a palindrome only when b = 0. There are 8 ways
to choose (a, c), so this case contributes a total of 8 ways.

Finally, we add up the results from both cases to get 225 + 8 = 233 .

6. Compute the sum of all positive integers n such that nn has 325 positive integer divisors. (For
example, 44 = 256 has 9 positive integer divisors: 1, 2, 4, 8, 16, 32, 64, 128, 256.)

Answer: 93

Solution: Observe that n ̸= 1, so let the prime factorization of n be pe11 pe22 . . . pekk where the ei
are in increasing order. We have the number of divisors of nn = pe1n1 pe2n2 . . . peknk is

325 = (e1n+ 1)(e2n+ 1) . . . (ekn+ 1). (∗)

As a result, we look at how to write 325 = 52 · 13 as the product of integers greater than 1. We
have 325 can be expressed as 325, 13 · 25, 5 · 65, 5 · 5 · 13.
If the sole term on the RHS of (∗) is 324, then 325 = e1n+1 and 324 = e1n and n has only one
prime factor. We have 324 = 2234, so n is either a power of 2 or a power of 3.

If n = 2x, then x2x = 2234. We have the RHS of this equation is not divisible by 8, so 2x ≤ 4
and x ≤ 2. It is easy to check that x = 1 and x = 2 do not work.

If n = 3y, then y3y = 2234. We have the RHS of this equation is not divisible by 35, so 3y ≤ 35

and y ≤ 5. Of these y, only y = 4 satisfies the equation, giving us a solution of n = 34 = 81.

If the terms on the RHS of (∗) are 13 · 25, then 13 = e1n + 1 and 25 = e2n + 1 and n has two
prime factors. We have e1n = 12 and n has two prime factors, so either n = 6 or n = 12. We
find n = 6 fails but n = 12 yields a solution.
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If the terms on the RHS of (∗) are 5 ·65, then 5 = e1n+1 and n has two prime factors. However,
as e1n = 4 and n divides 4, this is a contradiction as n can only have one prime factor, 2. Thus,
there are no solutions in this case.

If the terms on the RHS of (∗) are 5 · 5 · 13, then 5 = e1n + 1 and n has three prime factors.
However, as e1n = 4 and n divides 4, this is a contradiction similar to before. There are again
no solutions in this case.

Thus, the sum of all n is 12 + 81 = 93 .

7. For a given positive integer n, you may perform a series of steps. At each step, you may apply
an operation: you may increase your number by one, or if your number is divisible by 2, you may
divide your number by 2. Let ℓ(n) be the minimum number of operations needed to transform
the number n to 1 (for example, ℓ(1) = 0 and ℓ(7) = 4). How many positive integers n are there
such that ℓ(n) ≤ 12?

Answer: 377

Solution: Given a positive integer n, we consider the sequence of operations defined using the
following greedy algorithm, as follows.

(a) If n = 1, we finish.

(b) If n is even, we apply the operation n 7→ n/2.

(c) If n is odd, we apply the operation n 7→ n+ 1.

The key claim is that the greedy algorithm defined above requires length ℓ(n) in order to reduce
n to 1. In other words, we claim that the greedy algorithm is optimal to reduce n to 1.

Technically we ought to show that the greedy algorithm always terminates. Well, if n is even,
then the greedy algorithm causes n to strictly decrease; if n = 1, then we finish automatically;
and if n ≥ 3 is odd, then we add one and will divide by two in the next step, so we see n 7→ n+1

2
still causes n to strictly decrease. So indeed, the algorithm will terminate.

We now show that the greedy algorithm is optimal, by induction on n. It is optimal for n = 1
because ℓ(1) = 0. Otherwise, n > 1, and we have two cases.

• If n is odd, then the only operation we are allowed to apply is n 7→ n + 1, so the greedy
algorithm behaves optimally here.

• If n is even, then we need to show dividing by two will reduce to 1 faster than adding
1. Well, there is some optimal sequence of operations which reduces n to 1. Suppose that
such a sequence of operations starts by adding one k ≥ 0 times. After these k operations,
we divide by 2, so we drop down to n+k

2 and continue from there. So it has taken k + 1

operations to reduce n to n+k
2 .

However, we notice that we have the following optimization: k must be even because n is
even, so we could have first divided n by 2 and then added one k/2 times, still sending n
to n

2 + k
2 . So it has taken k

2 + 1 operations to reduce n to n+k
2 .

But by the optimality of the original sequence, we see that k + 1 ≤ k
2 + 1 is forced. So we

must have k = 0, meaning that any optimal sequence of operations begins by dividing by
2.

So in all cases we see that the greedy algorithm does indeed give the optimal sequence of moves,
and in fact the greedy algorithm provides the unique such sequence of moves.
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We are now ready to finish the problem. Given m ≥ 0, set am to be the number of even positive
integers n such that ℓ(n) = m, and we set bm to be the number of odd positive integers n such
that ℓ(n) = m. Fixing some m ≥ 1, we see that each even integer with ℓ(n) = m comes from the
double of an integer with ℓ(n) = m − 1, so am = bm−1 + am−1. Additionally, each odd integer
with ℓ(n) = m comes from one minus an even integer with ℓ(n) = m, with the exception of the
number 1, which should not be first obtained from subtracting 1 from 2. Noting that ℓ(2) = 1,
we have bm = am−1 for all m ≥ 3, and b0 = 1. The system of recurrences is, for all m ≥ 3, is:{

am = am−1 + bm−1,

bm = am−1.

We get the recursion am = am−1 + am−2 for m ≥ 3. The first few terms of an and bn are a0 = 0,
b0 = 1, a1 = 1, b1 = 0, a2 = 1, b2 = 0, a3 = 1, and b3 = 1. From this point forward, the
recurrence works, and an and bn are the Fibonacci numbers, shifted over by some amount.

The total number of positive integers such that ℓ(n) ≤ 12 is

12∑
m=0

(am + bm).

We can either compute the entire sum by hand or use the fact that the sum of the first k
Fibonacci numbers is equal to one less than the k+2th Fibonacci number to arrive at the total
377 .

8. Consider the randomly generated base 10 real number r = 0.p0p1p2 . . ., where each pi is a digit
from 0 to 9, inclusive, generated as follows: p0 is generated uniformly at random from 0 to
9, inclusive, and for all i ≥ 0, pi+1 is generated uniformly at random from pi to 9, inclusive.
Compute the expected value of r.

Answer: 10
19

Solution: By linearity of expectation, we have that

E[r] = E[p0/10] + E[p1/10
2] + · · · =

∞∑
i=0

E[pi]

10i+1
,

so it suffices to compute the expected value of each digit. We calculate E[pi] inductively. First,
note that

E[p0] = 0 · 1

10
+ 1 · 1

10
+ · · ·+ 9 · 1

10
=

9

2
.

Now, we try to compute E[pi+1] in terms of E[pi]. Suppose we know that pi = d, where d is a
digit from 0 to 9. Then pi+1 is randomly generated from d to 9, inclusive, so

E[pi+1|pi = d] = d · 1

10− d
+ (d+ 1) · 1

10− d
+ · · ·+ 9 · 1

10− d
=

9 + d

2
.
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Now, to compute the expected value of E[pi+1], we consider all cases for pi. We have that

E[pi+1] =

9∑
d=0

E[pi+1|pi = d]P (pi = d)

=
9∑

d=0

9 + d

2
P (pi = d)

=
9∑

d=0

9

2
P (pi = d) +

9∑
d=0

d

2
P (pi = d)

=
9

2
+

1

2
E[pi],

by the law of total probability and definition of expectation.

Thus, we get the recurrence relation{
E[p0] =

9
2

E[pi+1] =
9
2 + 1

2E[pi].

Solving this recurrence gives

E[pi] = 9− 9

2

(
1

2

)i

,

so we have that

E[r] =

∞∑
i=0

9− 9
2

(
1
2

)i
10i+1

=

∞∑
i=0

9

10

(
1

10

)i

− 9

20

(
1

20

)i

=
9
10

1− 1
10

−
9
20

1− 1
20

=
9
10
9
10

−
9
20
19
20

= 1− 9

19

=
10

19
.

9. Let p = 101. The sum
10∑
k=1

1(
p
k

)
can be written as a fraction of the form

a

p!
, where a is a positive integer. Compute a (mod p).

Answer: 5
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Solution: Notice that we can remove the fractions immediately by writing

a = p!
10∑
k=1

1(
p
k

) =
10∑
k=1

(
p! · k!(p− k)!

p!

)
=

10∑
k=1

k!(p− k)!.

Now, the key observation is that, for given k, we can “flip” (p− k)! around by writing

(p− k)! = 1 · 2 · . . . · (p− k − 1) · (p− k)

≡ −(p− 1) · −(p− 2) · . . . · −(k + 1) · −k

≡ (−1)p−k
(
(p− 1) · (p− 2) · . . . · (k + 1) · k

)
≡ (−1)p−k · (p− 1)!

(k − 1)!
(mod p).

In particular, we see that

k!(p− k)! ≡ k! · (−1)p−k · (p− 1)!

(k − 1)!

≡ (−1)p−kk(p− 1)!

≡ (−1)p−k+1k (mod p),

where we have used the fact that (p − 1)! ≡ −1 (mod p) in the last step. We note that
(−1)p−k+1 = (−1)k, so we see that we are interested in evaluating

a ≡
10∑
k=1

(−1)kk (mod p).

We can now note that two consecutive terms 2ℓ− 1 and 2ℓ in the sum total to (−1)2ℓ−1 · (2ℓ−
1) + (−1)2ℓ · (2ℓ) = 1, so the total sum evaluates to

a ≡
5∑

ℓ=1

(
(−1)2ℓ−1 · (2ℓ− 1) + (−1)2ℓ · (2ℓ)

)
≡ 5 (mod p),

which is what we wanted.

10. Let N be the number of ways to draw 22 straight edges between 10 labeled points, of which no
three are collinear, such that no triangle with vertices among these 10 points is created, and

there is at most one edge between any two labeled points. Compute
N

9!
.

Answer: 23
24

Solution: We claim that the resulting graph is bipartite and connected.

To prove the graph is bipartite, we would like to show that if the graph has a cycle of length 5,
then the graph has less than 22 edges. Suppose S is a set of 5 vertices which is a cycle of length
5, and let T be the set of the other 5 vertices. The subgraph of S contains 5 edges. Since T
does not contain a triangle, the subgraph of T has at most 6 edges. Between S and T , no two
adjacent vertices from S may connect to the same vertex in T , so for each vertex in T , there is
at most 2 edges connecting it to vertices of S, for a total of at most 2 · 5 = 10 edges. This gives
a total of at most 21 edges, which is less than 22. Similar arguments can be made for 7-cycles
and 9-cycles, which result in fewer edges. We conclude that the graph is bipartite.
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To prove it is connected, we just need to show that any bipartite disconnected graph of 10
vertices has less than 22 edges. We can check that if the connected components have sizes 10−k
and k, there are at most 20 edges over all values of k ≥ 1, and the greatest possible number of
edges decreases as we split the components further, so the graph is connected.

The facts that the graph is bipartite and connected make counting the number of graphs sat-
isfying this property much easier, as we can just split the vertices into two groups, create the
complete bipartite graph, and take away edges until we get to 22. There are two cases.

Case 1: Two groups of 5 vertices. There are 1
2

(
10
5

)
ways to split the vertices into two groups of

5. The complete bipartite graph in this case has 25 edges, and we have
(
25
3

)
ways to delete 3 of

the edges, for a total of 1
2

(
10
5

)(
25
3

)
ways in this case.

Case 2: A group of 4 and a group of 6. There are
(
10
4

)
ways to split the vertices into a group

of 4 and a group of 6. The complete bipartite graph in this case has 24 edges, and we have
(
24
2

)
ways to delete 2 of the edges, for a total of

(
10
4

)(
24
2

)
ways in this case.

The total number of graphs, N , is:

1

2

(
10

5

)(
25

3

)
+

(
10

4

)(
24

2

)
=

(
10

4

)(
24

2

)(
1

2
· 6
5
· 25
3

+ 1

)
=

10 · 9 · 8 · 7 · 24 · 23
4 · 3 · 2 · 1 · 2 · 1

· 6

= 10 · 9 · 8 · 7 · 23 · 3.

Finally, N
9! =

23

24
.


