1. Let $g(x)=\int_{2021}^{x}\left(e^{t}-2 t\right) \mathrm{d} t$. Compute $g^{\prime}(2021)$.

Answer: $e^{2021}-4042$
Solution: By the Fundamental Theorem of Calculus, $g^{\prime}(x)=e^{x}-2 x$. So, the answer is $e^{2021}-4042$.
2. Let $f(x)=(x+3)(2 x+5)(3 x+7)(x+1)$. Compute $f^{(4)}(5)$. (Note that $\left.f^{(4)}(5)=f^{\prime \prime \prime \prime \prime}(5).\right)$

Answer: 144
Solution: Note that $f(x)$ is a quartic, so taking the fourth derivative gives us a constant, and we only need to care about the x^{4} term. This term ends up being $6 x^{4}$, and its fourth derivative is $6 \cdot 4!=144$, our answer.
3. A quadratic function in the form $x^{2}+c x+d$ has vertex (a, b). If this function and its derivative are graphed on the coordinate plane, then they intersect at exactly one point. Compute b.
Answer: 1
Solution: The quadratic function with vertex (a, b) is $(x-a)^{2}+b$, and its derivative is $2(x-a)$. When we set them equal, we expect the resulting equation $(x-a)^{2}+b=2(x-a)$ to have exactly one solution. Moving all terms to the left side, $(x-a)^{2}-2(x-a)+b=0$, and now we can complete the square: $((x-a)-1)^{2}-1+b=0$. So $(x-a-1)^{2}=-b+1$, and for this equation to have exactly one solution, we must have $-b+1=0$, or $b=1$.
4. Compute the area of the region of points satisfying the inequalities $y \leq 4-\frac{x^{2}}{9}, y \geq \frac{x^{2}}{9}-4$, $x \leq 4-\frac{y^{2}}{9}$, and $x \geq \frac{y^{2}}{9}-4$.
Answer: 52
Solution: The region enclosed by these parabolas is a square with extra parabola lumps of equal size, with vertices at the intersections of the parabolas at $(\pm 3, \pm 3)$. The area of a parabola lump is $\int_{-3}^{3}\left(\left(4-\frac{x^{2}}{9}\right)-3\right) \mathrm{d} x=4$, and the area of the square is $6^{2}=36$, so the area of the region is $36+4 \cdot 4=52$.
5. Suppose the following equality holds, where a, b, c are integers and K is the constant of integration:

$$
\int \frac{\sin ^{a}(x)-\cos ^{a}(x)}{\sin ^{b}(x) \cos ^{b}(x)} \mathrm{d} x=\frac{\csc ^{c}(x)}{c}+\frac{\sec ^{c}(x)}{c}+K
$$

If $a=2021$, compute $a+b+c$.
Answer: 6060
Solution: We see that

$$
\int \frac{\sin ^{a}(x)-\cos ^{a}(x)}{\sin ^{b}(x) \cos ^{b}(x)} \mathrm{d} x=\int\left(\frac{\sin ^{a-b} x}{\cos ^{b} x}-\frac{\cos ^{a-b} x}{\sin ^{b} x}\right) \mathrm{d} x
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{\csc ^{c} x}{c}+\frac{\sec ^{c} x}{c}\right]=-\csc ^{c} x \cot x+\sec ^{c} x \tan x=-\frac{\cos x}{\sin ^{c+1} x}+\frac{\sin x}{\cos ^{c+1} x}
$$

so

$$
-\frac{\cos x}{\sin ^{c+1} x}+\frac{\sin x}{\cos ^{c+1} x}=\frac{\sin ^{a-b} x}{\cos ^{b} x}-\frac{\cos ^{a-b} x}{\sin ^{b} x}
$$

This gives us a system of equations

$$
\left\{\begin{array}{l}
a-b=1 \\
c+1=b
\end{array}\right.
$$

By plugging in $a=2021$, we get $b=2020$ and $c=2019$, so $a+b+c=6060$.
6. Let $x_{1}=-4$, and for $n \geq 1$, define $x_{n+1}=-4^{x_{n}}$. Similarly, let $f_{1}(x)=\sin (\arccos x)$, and for $n \geq 1$, define $f_{n+1}(x)=f_{1}\left(f_{n}(x)\right)$. Compute

$$
\lim _{n \rightarrow \infty} f_{n}\left(2^{x_{n}}\right)
$$

You may assume that this limit exists.
Answer: $\frac{1}{\sqrt{2}}$
Solution: We start by finding $\lim _{n \rightarrow \infty} x_{n}$. Say that this limit evaluates to x. We are given that

$$
x_{n+1}=-4^{x_{n}} .
$$

Taking the limit of both sides as $n \rightarrow \infty$,

$$
x=-4^{x} .
$$

Drawing the graphs for these functions, we observe that they intersect only once. Hence, there is only one solution for x. After some guess and check, we find that $x=-\frac{1}{2}$ works and must be the unique solution.
We now evaluate the desired limit:

$$
\lim _{n \rightarrow \infty} f_{n}\left(2^{x_{n}}\right)=\lim _{n \rightarrow \infty} f_{n}\left(2^{x}\right)=\lim _{n \rightarrow \infty} f_{n}\left(\frac{1}{\sqrt{2}}\right) .
$$

Note that $f_{1}\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}$, so it can be shown through induction that $f_{n}\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}$ for all integers n.
Therefore, we have $\lim _{n \rightarrow \infty} f_{n}\left(2^{x_{n}}\right)=\frac{1}{\sqrt{2}}$.
7. Let $c(x)=\frac{e^{x}+e^{-2 x}}{2}$, defined on the interval $1 \leq x \leq 2$. Let $c^{-1}(x)$ be the inverse of $c(x)$. Compute

$$
\int_{c(1)}^{c(2)} c^{-1}(x) \mathrm{d} x
$$

Answer: $\frac{1}{2} e^{2}+\frac{5}{4} e^{-4}-\frac{3}{4} e^{-2}$
Solution: We consider the following identity, which can be derived from a graphical view of the problem below:

Thinking of the integral as an area under the curve, we have:

$$
\int_{a}^{b} f(x) \mathrm{d} x+\int_{f(a)}^{f(b)} g(y) \mathrm{d} y+a f(a)=b f(b)
$$

where g and f are inverse functions.
Thus,

$$
\begin{aligned}
\int_{c(1)}^{c(2)} c^{-1}(x) \mathrm{d} x & =2 c(2)-c(1)-\int_{1}^{2} c(x) \mathrm{d} x \\
& =e^{2}+e^{-4}-\frac{e+e^{-2}}{2}-\frac{1}{2} \int_{1}^{2} e^{x}+e^{-2 x} \mathrm{~d} x \\
& =e^{2}+e^{-4}-\frac{e}{2}-\frac{e^{-2}}{2}-\frac{e^{2}}{2}+\frac{e}{2}+\frac{e^{-4}}{4}-\frac{e^{-2}}{4} \\
& =\frac{1}{2} e^{2}+\frac{5}{4} e^{-4}-\frac{3}{4} e^{-2} .
\end{aligned}
$$

Thus our answer is $\frac{1}{2} e^{2}+\frac{5}{4} e^{-4}-\frac{3}{4} e^{-2}$.
8. Define

$$
f_{n}(x)=\int_{0}^{x} \frac{t^{6 n-1}}{1+t^{3}} \mathrm{~d} t
$$

for positive integers n and real numbers $0 \leq x \leq 1$. We can write $f_{n}(x)=c \cdot \log (p(x))+h_{n}(x)$, where $p(x)$ and $h_{n}(x)$ are polynomials with real coefficients with $p(x)$ monic (coefficient of the highest degree term is 1), and c is a real number. Compute

$$
\lim _{n \rightarrow \infty} h_{n}(1) .
$$

Answer: $\frac{\ln 2}{3}$
Solution: Note that the base of the log does not matter, as value of c changes as the base of the log changes by change of base. We consider the log to be base e.

First, note that $\lim _{n \rightarrow \infty} \frac{t^{6 n-1}}{t^{3}+1}=0$ for $0 \leq t<1$, and $\lim _{n \rightarrow \infty} \frac{t^{6 n-1}}{t^{3}+1}=\frac{1}{2}$ for $t=1$. Taking the integral to be the area under the curve, we have

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{t^{6 n-1}}{t^{3}+1} \mathrm{~d} t=0
$$

Therefore,

$$
\lim _{n \rightarrow \infty} h_{n}(x)=-\lim _{n \rightarrow \infty} c \ln (p(x)) .
$$

Next, we classify the possible polynomials $p(x)$ could be. Taking the derivative of both sides of $f_{n}(x)=c \cdot \ln (p(x))+h_{n}(x)$ gives

$$
\frac{x^{6 n-1}}{1+x^{3}}=f_{n}^{\prime}(x)=\frac{c p^{\prime}(x)}{p(x)}+h_{n}^{\prime}(x),
$$

or

$$
x^{6 n-1} p(x)=\left(1+x^{3}\right)\left(c p^{\prime}(x)+h_{n}^{\prime}(x) p(x)\right) .
$$

Then $1+x^{3}$ must divide $x^{6 n-1} p(x)$, but $x^{6 n-1}$ and $1+x^{3}$ do not share any complex roots, so $1+x^{3}$ must divide $p(x)$. Let $p(x)=\left(1+x^{3}\right) q(x)$, where $q(x)$ is a real (monic) polynomial.
Plugging in, we have that

$$
x^{6 n-1}\left(1+x^{3}\right) q(x)=\left(1+x^{3}\right)\left(c\left(\left(1+x^{3}\right) q^{\prime}(x)+3 x^{2} q(x)\right)+h_{n}^{\prime}(x)\left(1+x^{3}\right) q(x),\right.
$$

so

$$
\left(x^{6 n-1}-3 c x^{2}-h_{n}^{\prime}(x)\right) q(x)=c\left(1+x^{3}\right) q^{\prime}(x) .
$$

Suppose $q(x)$ shares no complex roots with $1+x^{3}$ and has degree ≥ 1. Then $q(x) \mid q^{\prime}(x)$, which is not possible, as the degree of $q(x)$ is larger than the degree of $q^{\prime}(x)$. Thus, $q(x)$ must either be 1 or share a root with $1+x^{3}$. Since $q(x)$ is a real polynomial, $q(x)$ must be of the form $(1+x)^{a}\left(1-x+x^{2}\right)^{b}$, where a and b are natural numbers. Equivalently, $p(x)=$ $(1+x)^{a+1}\left(1-x+x^{2}\right)^{b+1}$ for natural numbers a and b.
Plugging this in gives

$$
\begin{aligned}
& x^{6 n-1}(1+x)^{a+1}\left(1-x+x^{2}\right)^{b+1} \\
= & \left(1+x^{3}\right)\left(c(1+x)^{a}\left(1-x+x^{2}\right)^{b}\left((a+1)\left(1-x+x^{2}\right)+(b+1)(-1+2 x)(1+x)\right)\right. \\
\quad & \left.+h_{n}^{\prime}(x)(1+x)^{a+1}\left(1-x+x^{2}\right)^{b+1}\right)
\end{aligned}
$$

and simplifying gives

$$
\begin{aligned}
x^{6 n-1} & =\left(c\left((a-b)+(b-a) x+(a+2 b+3) x^{2}\right)+h_{n}^{\prime}(x)\left(1+x^{3}\right)\right. \\
\Longrightarrow h_{n}^{\prime}(x) & =\frac{x^{6 n-1}-\left(c\left((a-b)+(b-a) x+(a+2 b+3) x^{2}\right)\right.}{1+x^{3}} \\
\Longrightarrow h_{n}^{\prime}(x) & =\frac{x^{6 n-1}+x^{2}}{1+x^{3}}+\frac{-x^{2}-\left(c\left((a-b)+(b-a) x+(a+2 b+3) x^{2}\right)\right.}{1+x^{3}} .
\end{aligned}
$$

Since h_{n} is a polynomial, h_{n}^{\prime} must also be a polynomial. Since $\frac{x^{6 n-1}+x^{2}}{1+x^{3}}$ is a polynomial, we need $\frac{-x^{2}-\left(c\left((a-b)+(b-a) x+(a+2 b+3) x^{2}\right)\right.}{1+x^{3}}$ to be a polynomial; thus, we need the numerator to be 0 . Setting all the coefficients to 0 , we get that $a=b$ and $-1-c(a+2 b+3)=0$, and thus $c=-\frac{1}{3(a+1)}$.

Plugging back into our original expression, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} h_{n}(1) & =-\lim _{n \rightarrow \infty} c \ln (p(1)) \\
& =-\lim _{n \rightarrow \infty}-\frac{1}{3(a+1)} \cdot \ln \left((1+1)^{a+1}\left(1-1+1^{2}\right)^{b+1}\right) \\
& =\frac{\ln 2}{3} .
\end{aligned}
$$

9. Emily plays a game on the real line. Emily starts at the number 1 and starts with 0 points. When she is at the real number a, she chooses a real number b such that $a<b \leq 100$. She then moves to b and gains $\frac{4(b-a)}{(a+b)^{2}}$ points. She repeats this process until she reaches the number 100 . Compute the smallest possible value of c such that Emily's score is always less than c.

Answer: $\frac{99}{100}$

Solution: Note that we can express $\frac{4(b-a)}{(a+b)^{2}}=\frac{b-a}{\left(\frac{a+b}{2}\right)^{2}}$. Let the sequence of points that Emily lands on be $x_{0}, x_{1}, \cdots, x_{n}$ where $x_{0}=1$ and $x_{n}=100$. Then, Emily's score can be written as

$$
\sum_{i=1}^{n} \frac{x_{i}-x_{i-1}}{\left(\frac{x_{i}+x_{i-1}}{2}\right)^{2}}
$$

which is exactly the midpoint Riemann sum approximation for the integral

$$
\int_{1}^{100} \frac{1}{x^{2}} \mathrm{~d} x
$$

Moreover, since the function $f(x)=\frac{1}{x^{2}}$ is a concave up function, the midpoint Riemann sum approximation will always be less than the integral, and as $n \rightarrow \infty$, the Riemann sum can get infinitely close to the integral, by the definition of the integral. Thus, the smallest possible value for c is

$$
\int_{1}^{100} \frac{1}{x^{2}} \mathrm{~d} x=\left[-\frac{1}{x}\right]_{1}^{100}=\frac{99}{100}
$$

10. Compute

$$
\prod_{n=1}^{\infty} \frac{\pi \arctan (n)}{2 \arctan (2 n) \arctan (2 n-1)}
$$

Answer: $\sqrt[\pi]{4}$
Solution: Let $P_{N}:=\prod_{n=1}^{N} \frac{\pi \arctan (n)}{2 \arctan (2 n) \arctan (2 n-1)}$ be the N th partial product. Notice that by taking a logarithm and telescoping,

$$
\ln P_{N}=N \ln \left(\frac{\pi}{2}\right)-\sum_{n=N+1}^{2 N} \ln (\arctan (n)) .
$$

We compute this summation by approximating using Taylor series. Observe that if N is very large, then $1 / n$ is close to 0 for $n \geq N$. Also observe that

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \arctan \left(\frac{1}{z}\right)=\frac{-1}{z^{2}+1}=-1+O\left(z^{2}\right)
$$

and $\lim _{z \rightarrow 0^{+}} \arctan (1 / z)=\pi / 2$, so we have for large n,

$$
\arctan (n)=\frac{\pi}{2}-\frac{1}{n}+O\left(\frac{1}{n^{3}}\right)
$$

This gives for large n

$$
\begin{aligned}
\ln (\arctan (n)) & =\ln \left(\frac{\pi}{2}-\frac{1}{n}+O\left(\frac{1}{n^{2}}\right)\right) \\
& =\ln \left(\frac{\pi}{2}\right)+\ln \left(1-\frac{2}{\pi n}+O\left(\frac{1}{n^{2}}\right)\right) \\
& =\ln \left(\frac{\pi}{2}\right)-\frac{2}{\pi n}+O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

using the Taylor series for $\ln (1+x)$. Thus we compute

$$
\begin{aligned}
\ln P_{N} & =\sum_{n=N+1}^{2 N}\left(\frac{2}{\pi n}+O\left(\frac{1}{n^{2}}\right)\right) \\
\ln P & =\lim _{N \rightarrow \infty} \int_{N}^{2 N} \frac{2}{\pi x} \mathrm{~d} x=\frac{2 \ln 2}{\pi}
\end{aligned}
$$

by noting that the summation may be approximated by an integral with the approximation error vanishing in the limit $N \rightarrow \infty$. This gives us our answer of $P=4^{1 / \pi}=\sqrt[\pi]{4}$.

