1. Let the sequence $\left\{a_{n}\right\}$ for $n \geq 0$ be defined as $a_{0}=c$, and for $n \geq 0$,

$$
a_{n}=\frac{2 a_{n-1}}{4 a_{n-1}^{2}-1}
$$

Compute the sum of all values of c such that a_{2020} exists but a_{2021} does not exist.
Answer: 0
Solution 1: Note that if $a_{0}=c$ works, then $a_{0}=-c$ also works, as the sequence given by $a_{0}=-c$ is just the sequence given by $a_{0}=c$ with all terms in the sequence negated. Thus, our answer is 0 .
Solution 2: Define the sequence $\left\{\theta_{n}\right\}$ such that $a_{n}=\frac{1}{2} \tan \theta_{n}$. Then we have that $\theta_{n}=2^{n} \theta_{0}$.
For a_{2021} not to exist while a_{2020} exists, we need that $\theta_{2021}=\frac{\pi}{2}+\pi m$ for some integer m. Thus, $\theta_{0}=\frac{(2 m+1)}{2^{2022}}$ for some integer m.
Summing over all m such that θ_{0} is in the range $[0,2 \pi)$, we get the sum of 0 , since symmetric terms cancel out.
2. Real numbers x and y satisfy the equations $x^{2}-12 y=17^{2}$ and $38 x-y^{2}=2 \cdot 7^{3}$. Compute $x+y$.

Answer: 25

Solution: Subtracting the second equation from the first equation gives $x^{2}-38 x+y^{2}-12 y=$ -397 , and completing the square for x and y gives $(x-19)^{2}+(y-6)^{2}=0$. Since $a^{2}=0$ if and only if $a=0$, we must have $x=19$ and $y=6$, so $x+y=25$. (We can check that this solution works by plugging back into the two original equations.)
3. For integers a and $b, a+b$ is a root of $x^{2}+a x+b=0$. Compute the smallest possible value of $a b$.
Answer: -54
Solution: By Vieta's formulas, the two roots are $x=-2 a-b$ and $x=a+b$. Moreover, we can build and simplify an equation regarding their product: $(a+b)(-2 a-b)=b$, so

$$
2 a^{2}+3 b a+\left(b^{2}+b\right)=0
$$

We further establish a condition based on the fact that the roots are integers that the discriminant must be equivalent to the square of an integer k :

$$
\Delta_{1}=(3 b)^{2}-4 \cdot 2\left(b^{2}+b\right)=k^{2}
$$

It follows that $b^{2}-8 b-k^{2}=0$. We can take the discriminant of this new quadratic with respect to b again:

$$
\Delta_{2}=8^{2}+4 k^{2}=64+4 k^{2}=q^{2}
$$

for some integer q. Let $q=2 m$ so that $64+4 k^{2}=4 m^{2}$; it follows that $16=(m+k)(m-k)$.
We generate ordered pairs (m, k) that satisfy this constraint by difference of squares; we get the pairs $(4,0),(-4,0),(5,-3),(5,3),(-5,-3)$, and $(-5,3)$. We have values of $k=0, \pm 3$, which we can substitute into our previous equations for b to get $b^{2}-8 b=0$ (which gives $b=0,8$) and $b^{2}-8 b-9=0($ which gives $b=9,-1)$.

With these values for b, we can substitute back into $2 a^{2}+3 b a+\left(b^{2}+b\right)=0$ to get the quadratics

$$
\begin{cases}2 a^{2}=0 & b=0 \\ 2 a^{2}-3 a=0 & b=-1 \\ 2 a^{2}+24 a+72=0 & b=8 \\ 2 a^{2}+27 a+90=0 & b=9\end{cases}
$$

Solving each of these for a shows that $b=9$ yields the smallest value of $a b=(-6)(9)=\boxed{-54}$.

