
BMT 2021 Algebra Test Solutions November 20–21, 2021

1. Let x be a real number such that x2 − x+1 = 7 and x2 + x+1 = 13. Compute the value of x4.

Answer: 81

Solution: Subtracting the first equation from the second yields 2x = 6, which implies x = 3.
Thus, x4 = 34 = 81 .

2. Let f and g be linear functions such that f(g(2021))− g(f(2021)) = 20. Compute f(g(2022))−
g(f(2022)). (Note: A function h is linear if h(x) = ax+ b for all real numbers x.)

Answer: 20

Solution: For real numbers a, b, c, and d, let f(x) = ax + b, and let g(x) = cx + d. Observe
that

f(g(x))− g(f(x)) = ad+ b− bc− d,

so this value is constant for each x. Therefore, the answer is 20 .

3. Let x be a solution to the equation ⌊x ⌊x+ 2⌋+ 2⌋ = 10. Compute the smallest C such that for
any solution x, x < C. Here, ⌊m⌋ is defined as the greatest integer less than or equal to m. For
example, ⌊3⌋ = 3 and ⌊−4.25⌋ = −5.

Answer: 9
4

Solution: If ⌊x ⌊x+ 2⌋+ 2⌋ = 10, then x ⌊x+ 2⌋ + 2 < 11, which means that x ⌊x+ 2⌋ < 9.
To do some bounding, recognize that if x = 2, then x ⌊x+ 2⌋ = 8. In addition, if x = 3, then
x ⌊x+ 2⌋ = 15. Thus, for our inequality to be adhered, we must have 2 < x < 3, which means
that ⌊x⌋ = 2. Thus, our expression becomes 4x < 9 =⇒ x < 9

4 , so the smallest possible value

of C is
9

4
.

4. Let θ be a real number such that 1 + sin 2θ −
(
1
2 sin 2θ

)2
= 0. Compute the maximum value of

(1 + sin θ)(1 + cos θ).

Answer: 1

Solution: Let S = sin θ + cos θ and P = sin θ cos θ. We can see that the value which we wish
to compute is 1 + S + P . By sine properties, we see that

1 + sin 2θ −
(
1

2
sin 2θ

)2

= 1 + 2 sin θ cos θ − (sin θ cos θ)2 = 1 + 2P − P 2 = 0,

so P = 1±
√
2. However, P can’t be greater than 1, since sine and cosine have an upper bound

of 1, so P = 1−
√
2. Expanding the original equation slightly differently yields

1 + 2 sin θ cos θ − (sin θ cos θ)2 = sin2 θ + cos2 θ + 2 sin θ cos θ − (sin θ cos θ)2

= (sin θ + cos θ)2 − (sin θ cos θ)2

= S2 − P 2.

As a result, we see that 1 + 2P − P 2 = S2 − P 2, so S = ±(1 −
√
2). We want to maximize

1 + S + P , and since P is fixed, this is equivalent to maximizing S. Thus, we get S =
√
2 − 1,

and hence, 1 + S + P = 1 + (
√
2− 1) + (1−

√
2) = 1 , which is our answer.
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5. Compute the sum of the real solutions to ⌊x⌋{x} = 2020x. Here, ⌊x⌋ is defined as the greatest
integer less than or equal to x, and {x} = x− ⌊x⌋.
Answer: − 1

2021

Solution: Noting that x = {x} + ⌊x⌋, we can simplify the equation into ⌊x⌋{x} = 2020⌊x⌋ +
2020{x}. By Simon’s Favorite Factoring Trick, this factors to

(⌊x⌋ − 2020)({x} − 2020) = 20202.

However, we note that, because 0 ≤ {x} < 1, we have −2020 ≤ {x} − 2020 < −2019. Then

−20202

2019
< ⌊x⌋ − 2020 ≤ −2020, so −2020

2019
< ⌊x⌋ ≤ 0. However, ⌊x⌋ is an integer, so it must

be either 0 or −1. If ⌊x⌋ = 0, then we find that x = 0 is a solution. If ⌊x⌋ = −1, then we
can substitute this into the original expression to get −1(x + 1) = 2020x where solving yields

x = − 1

2021
. Thus, the sum of the solutions is − 1

2021
+ 0 = − 1

2021
.

6. Let f be a real function such that for all x ̸= 0, x ̸= 1,

f (x) + f

(
− 1

x− 1

)
=

9

4x2
+ f

(
1− 1

x

)
.

Compute f
(
1
2

)
.

Answer: 45
8

Solution: The main motivation behind the problem is that g(x) = 1− 1
x cycles as x → 1− 1

x →
−1
x−1 → x. Given this, recognize that plugging in x and 1 − 1

x gives us the following equations
side by side:

f(x) + f

(
− 1

x− 1

)
− f

(
1− 1

x

)
=

9

4x2
=

(
3

2x

)2

f

(
1− 1

x

)
+ f(x)− f

(
− 1

x− 1

)
=

9

4
(
1− 1

x

)2 =

(
3x

2 (x− 1)

)2

.

Adding the equations together gives 2f(x) =
(

3
2x

)2
+
(

3x
2(x−1)

)2
and dividing by 2 yields f(x) =

1
2

((
3
2x

)2
+
(

3x
2(x−1)

)2)
. Evaluating this at x = 1

2 , we get f
(
1
2

)
=

45

8
.

7. Let z1, z2, . . . , z2020 be the roots of the polynomial z2020 + z2019 + · · ·+ z + 1. Compute

2020∑
i=1

1

1− z2020i

.

Answer: 1010

Solution: First note that if z is a root of the given polynomial, then z is a root of

(z − 1)(z2020 + z2019 + · · ·+ z + 1) = z2021 − 1.
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Hence, the values zi are the 2021st roots of unity except for 1. Because 2020 is relatively prime
to 2021, the values z2020i are simply a permutation of the values zi. That is to say,

2020∑
i=1

1

1− z2020i

=
2020∑
i=1

1

1− zi
.

Now observe that the solution set {zi} is contained entirely in the circle |z| = 1 and is symmetric
about the real axis. This means that the set {1 − zi} is contained entirely in the circle |z| =
2 cos(arg z) (i.e. the polar graph r = 2 cos θ) and is also symmetric about the real axis. Thus,

the set
{

1
1−zi

}
is contained entirely in the set |z| = 1

2 sec(arg z), and again, it is symmetric about

the real axis. The set |z| = 1
2 sec(arg z) is better identified as the set Re(z) = 1

2 (by multiplying
each side of the equation by cos(arg z)), which means that

Re

2020∑
i=1

1

1− zi
= 2020 · 1

2
= 1010.

Further, since this set is symmetric about the real axis, the imaginary part of the sum is equal
to 0, so the answer is 1010 .

8. Let f(w) = w3 − rw2 + sw − 4
√
2

27 denote a polynomial, where r2 =
(
8
√
2+10
7

)
s. The roots of f

correspond to the sides of a right triangle. Compute the smallest possible area of this triangle.

Answer:
3√
2

9

Solution: The roots must be in the form a, b, and
√
a2 + b2. Then a + b +

√
a2 + b2 = r and

ab + a
√
a2 + b2 + b

√
a2 + b2 = ab + (a + b)

√
a2 + b2 = s. Let x =

√
a2 + b2, y = a + b, z = ab.

Thus, x+y = r and xy+z = s. Note that x2+2z = y2, so z = y2−x2

2 , and thus y2+2xy−x2 = 2s.

Now, let r2 = αs, so that α = 8
√
2+10
7 . Then (x+ y)2 = α

2 (y
2 + 2xy − x2), or(

1 +
α

2

)
x2 + (2− α)xy +

(
1− α

2

)
y2 = 0.

Note that solutions must be in the form of x = ky, as any solution (x, y) will have a corresponding
solution (mx,my), where m is some real number. Hence, plugging x = ky and dividing by y,
we get (

1 +
α

2

)
k2 + (2− α) k +

(
1− α

2

)
= 0.

Now, plugging back in α, we get the equation
(
12+4

√
2

7

)
k2 +

(
4−8

√
2

7

)
k +

(
2−4

√
2

7

)
= 0 or,

simplifying out the 7’s in the denominator, (12+4
√
2)k2+(4− 8

√
2)k+(2− 4

√
2) = 0. Solving

the quadratic for k, we obtain

k =
8
√
2− 4±

√(
8
√
2− 4

)2
+ 4

(
12 + 4

√
2
) (

4
√
2− 2

)
2
(
12 + 4

√
2
)

=
8
√
2− 4±

√
176 + 96

√
2

2
(
12 + 4

√
2
)

=
8
√
2− 4± (12 + 4

√
2)

2
(
12 + 4

√
2
) .
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Note that since both x and y are positive, k must also be positive, so we take the positive

solution. Hence, k = 8
√
2−4+(12+4

√
2)

2(12+4
√
2)

= 12
√
2+8

2(12+4
√
2)

= 1√
2
. Hence we have x = y√

2
. Now, by

AM-GM,

1√
2
x =

√
a2 + b2

2
≥ a+ b

2
=

y

2
.

Thus, x ≥ y√
2
with equality at a = b. Using Vieta’s on the condition given by the coefficient of

the product term, we get ab
√
a2 + b2 = a3

√
2 = 4

√
2

27 =⇒ a =
3√4
3 . Thus, we have a = b =

3√4
3 ,

so the area is 1
2ab =

3
√
2

9
.

9. Compute the sum of the positive integers n ≤ 100 for which the polynomial xn + x + 1 can be
written as the product of at least 2 polynomials of positive degree with integer coefficients.

Answer: 1648

Solution: If a polynomial p(x) is reducible, then it may be written in the form p(x) = f(x)g(x).
The polynomial p′(x) = xdeg(p)p(1/x) is p but with the coefficients reversed. Suppose p and p′

do not share any roots. Then p′(x) = f ′(x)g′(x), so pp′ = kk′, where k = ±fg′ and k ̸= ±p, p′.
For p any polynomial, notice that the coefficient of xn of pp′ is the sum of the squares of the
coefficients of p. Substituting p(x) = xn + x + 1, we find that the coefficient of xn in pp′ is 3,
indicating that k must be a sum of 3 monomials:

(xn + xn−1 + 1)(xn + x+ 1) = x2n + x2n−1 + xn+1 + 3xn + xn−1 + x+ 1.

Since the top coefficient of pp′ is x2n and the bottom coefficient is 1, k must be of the form
(−1)p1xn + (−1)p2xa + (−1)p1 . Multiplying kk′ out, we get

kk′ = ((−1)p1xn + (−1)p2xa + (−1)p1)
(
(−1)p1xn + (−1)p2xn−a + (−1)p1

)
= x2n + (−1)p1+p2x2n−a + 3xn + (−1)p1+p2xn+a + (−1)p1+p2xa + (−1)p1+p2xn−a + 1

so x2n−1 + xn+1 + xn−1 + x = (−1)p1+p2(xn+a + xa + xn−a + x2n−a). It becomes clear that a
must equal 1 or n− 1 and p2 = p1.

Thus, if xn + x + 1 and xn + xn−1 + 1 share no roots, then they are irreducible. Conversely, if
they do share roots, then these polynomials will have a nontrivial common factor if n > 2 and
hence not be irreducible. Therefore, we notice that any roots of those two polynomials must be
a root of xn−2 − 1. Let ω be such a root. Then ωn + ω + 1 = ω2 + ω + 1 = 0, so ω must be a
third root of unity and so n− 2 ≡ 0 (mod 3). Thus, xn+x+1 is irreducible if and only if n = 2
or n ̸≡ 2 (mod 3). Summing all desired n ≤ 100 up, we get 16(5 + 98) = 1648 .

10. Given a positive integer n, define fn(x) to be the number of square-free positive integers k such
that kx ≤ n. Then, define v(n) as

v(n) =
n∑

i=1

n∑
j=1

fn
(
i2
)
− 6fn (ij) + fn

(
j2
)
.

Compute the largest positive integer 2 ≤ n ≤ 100 for which v(n)−v(n−1) is negative. (Note: A
square-free positive integer is a positive integer that is not divisible by the square of any prime.)

Answer: 60
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Solution: For some positive integer n, denote p(n) to be the number of distinct prime factors
of n. Note that p(1) = 0. Furthermore, denote F(x) to be the number of square-free positive
integers less than or equal to x for any nonnegative real number x. We first prove two lemmas.

Lemma 1. For any nonnegative real number x and positive integer a ≥ ⌊x⌋,
a∑

i=1

F
( x
i2

)
= ⌊x⌋.

Proof. Note that because a square-free number k counted in F
(
x
i2

)
must satisfy ki2 ≤ x, the

sum

⌊x⌋∑
i=1

F
( x
i2

)
counts the number of ways a positive integer less than or equal to x can be

represented as the product of a square-free number and a square. Since for any such n, there
exists exactly one way to represent n = ki2, where k is square-free and i is a positive integer,

we achieve

⌊x⌋∑
i=1

F
( x
i2

)
= ⌊x⌋.

Then, note that for any i > ⌊x⌋ we have i2 ≥ i > x, meaning that x
i2

< 1. Since the

smallest square-free number is 1, we have F
(
x
i2

)
= 0, meaning

a∑
i=1

F
( x
i2

)
=

⌊x⌋∑
i=1

F
( x
i2

)
+

a∑
i=⌊x⌋+1

F
( x
i2

)
=

⌊x⌋∑
i=1

F
( x
i2

)
= ⌊x⌋, as desired.

Lemma 2. For any nonnegative real number x and positive integer a ≥ ⌊x⌋,
a∑

i=1

F
(x
i

)
=

⌊x⌋∑
i=1

2p(i).

Proof. Similar to the proof of Lemma 1, we can note that a square-free number k counted

in F
(
x
i

)
must satisfy ki ≤ x, and therefore, the sum

⌊x⌋∑
i=1

F
(x
i

)
counts the number of ways

a positive integer less than or equal to x can be represented as the product of a square-free
number and a positive integer. For each positive integer n, consider pe11 pe22 · · · pekk to be the
prime factorization of n, where pi ̸= pj for i ̸= j, ei > 0 for all i, and k = p(n). Then, note that
the number of ways n can be represented as the product of a square-free number and a positive
integer is simply equal to the number of square-free factors of n. Because a square-free factor of

n is of the form n′ = p
e′1
1 p

e′2
2 · · · pe

′
k
k , where e′i ≤ 1 for all i, there are exactly 2k = 2p(n) square-free

factors of n. Summing over all n ≤ x, we obtain that

⌊x⌋∑
i=1

F
(x
i

)
=

⌊x⌋∑
i=1

2p(i).

Then, note that for any i > ⌊x⌋, we have i > x, meaning x
i < 1. Since the smallest square-free

number is 1, we have F
(
x
i

)
= 0, meaning

a∑
i=1

=

⌊x⌋∑
i=1

F
(x
i

)
+

a∑
i=⌊x⌋+1

F
(x
i

)
=

⌊x⌋∑
i=1

F
(x
i

)
=

⌊x⌋∑
i=1

2p(i), as desired.
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Now, note that a square-free positive integer k is only counted by fn(x) if and only if k ≤ n
x ;

therefore, fn(x) = F
(
n
x

)
. Thus, we can rewrite v(n) as

v(n) =
n∑

i=1

n∑
j=1

fn(i
2)− 6fn(ij) + fn(j

2)

=
n∑

i=1

n∑
j=1

F
( n
i2

)
− 6F

(
n

ij

)
+ F

(
n

j2

)

= 2n
n∑

i=1

F
( n
i2

)
− 6

n∑
i=1

n∑
j=1

F
(
n

ij

)

= 2n ⌊n⌋ − 6
n∑

i=1

n∑
j=1

F

((
n
i

)
j

)

= 2n2 − 6

n∑
i=1

⌊n
i ⌋∑

j=1

2p(j)

= 2n2 − 6
n∑

i=1

⌊n
i

⌋
2p(i)

= 2n2 − 6
n∑

i=1

∑
d|i

2p(d)

= 6

n2

3
−

n∑
i=1

∑
d|i

2p(d)


by applying our two lemmas. Now, we can simply subtract v(n)− v(n− 1) to obtain

v(n)− v(n− 1) = 6

n2

3
−

n∑
i=1

∑
d|i

2p(d)

− 6

(n− 1)2

3
−

n−1∑
i=1

∑
d|i

2p(d)


= 6

2n− 1

3
−
∑
d|n

2p(d)


It then suffices to find the maximum n ≥ 2 such that

∑
d|n

2p(d) >
2n− 1

3
. For any positive

integer n, let its prime factorization be pe11 pe22 · · · pekk , where pi ̸= pj for i ̸= j, ei > 0 for all i,

and k = p(n). We will then denote E(n) =

k∏
i=1

(2ei + 1) and claim that
∑
d|n

2p(d) = E(n) for all

n.

Proof. Consider the generating function

k∏
i=1

(
1 + 2pi + 2p2i + · · ·+ 2peii

)
. Each factor

n′ = p
e′1
1 p

e′2
2 · · · pe

′
k
k
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of n is represented by exactly one term in the expansion. Furthermore, note that for every
prime factor pi, the coefficient of n′ is multiplied by 2 if pi divides n′ and is multiplied by

1 otherwise. Thus, the coefficient of n′ in the expansion of
k∏

i=1

(
1 + 2pi + 2p2i + · · ·+ 2peii

)
is

exactly 2p(n
′). Then, to compute the value of

∑
d|n

2p(d), we want to find the sum of all coefficients

of the generating function, which is simply

k∏
i=1

1 + 2 + 2 + · · ·+ 2︸ ︷︷ ︸
ei times

 =

k∏
i=1

(2ei + 1) = E(n),

as desired.

Now, we want to find the maximum n such that E(n) > 2n−1
3 . Heuristically, E(n) is maximal

when n contains many prime factors. Simply by testing different distributions of prime factors,
we can see that the maximal possible value of n is 60.

Prime distribution E(n) max(n)

{6} 13 ≤ 2·64−1
3 Not possible

{5, 1} 33 ≤ 2·96−1
3 Not possible

{5} 11 ≤ 2·32−1
3 Not possible

{4, 1} 27 ≤ 2·48−1
3 Not possible

{3, 2} 35 ≤ 2·72−1
3 Not possible

{4} 9 ≤ 2·16−1
3 Not possible

{3, 1} 21 24

{2, 1, 1} 45 60

Since 2·60−1
3 = 119

3 , we do not need to test any value n for which E(n) ≤ 39, meaning 60 is the
maximum possible value of n, and we are done.

Remark. It is provable that 60 is the maximum value of n in general without imposing an

upper bound of 100. The inequality

k∏
i=1

(2ei + 1) > pe11 pe22 · · · pekk limits n due to size reasons, as

the left-hand side is linear in ei, while the right-hand side is exponential.


