1. Let x be a real number such that $x^{2}-x+1=7$ and $x^{2}+x+1=13$. Compute the value of x^{4}.

Answer: 81

Solution: Subtracting the first equation from the second yields $2 x=6$, which implies $x=3$. Thus, $x^{4}=3^{4}=81$.
2. Let f and g be linear functions such that $f(g(2021))-g(f(2021))=20$. Compute $f(g(2022))-$ $g(f(2022))$. (Note: A function h is linear if $h(x)=a x+b$ for all real numbers x.)

Answer: 20

Solution: For real numbers a, b, c, and d, let $f(x)=a x+b$, and let $g(x)=c x+d$. Observe that

$$
f(g(x))-g(f(x))=a d+b-b c-d,
$$

so this value is constant for each x. Therefore, the answer is 20 .
3. Let x be a solution to the equation $\lfloor x\lfloor x+2\rfloor+2\rfloor=10$. Compute the smallest C such that for any solution $x, x<C$. Here, $\lfloor m\rfloor$ is defined as the greatest integer less than or equal to m. For example, $\lfloor 3\rfloor=3$ and $\lfloor-4.25\rfloor=-5$.
Answer: $\frac{9}{4}$
Solution: If $\lfloor x\lfloor x+2\rfloor+2\rfloor=10$, then $x\lfloor x+2\rfloor+2<11$, which means that $x\lfloor x+2\rfloor<9$. To do some bounding, recognize that if $x=2$, then $x\lfloor x+2\rfloor=8$. In addition, if $x=3$, then $x\lfloor x+2\rfloor=15$. Thus, for our inequality to be adhered, we must have $2<x<3$, which means that $\lfloor x\rfloor=2$. Thus, our expression becomes $4 x<9 \Longrightarrow x<\frac{9}{4}$, so the smallest possible value of C is $\frac{9}{4}$.
4. Let θ be a real number such that $1+\sin 2 \theta-\left(\frac{1}{2} \sin 2 \theta\right)^{2}=0$. Compute the maximum value of $(1+\sin \theta)(1+\cos \theta)$.
Answer: 1
Solution: Let $S=\sin \theta+\cos \theta$ and $P=\sin \theta \cos \theta$. We can see that the value which we wish to compute is $1+S+P$. By sine properties, we see that

$$
1+\sin 2 \theta-\left(\frac{1}{2} \sin 2 \theta\right)^{2}=1+2 \sin \theta \cos \theta-(\sin \theta \cos \theta)^{2}=1+2 P-P^{2}=0
$$

so $P=1 \pm \sqrt{2}$. However, P can't be greater than 1 , since sine and cosine have an upper bound of 1 , so $P=1-\sqrt{2}$. Expanding the original equation slightly differently yields

$$
\begin{aligned}
1+2 \sin \theta \cos \theta-(\sin \theta \cos \theta)^{2} & =\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-(\sin \theta \cos \theta)^{2} \\
& =(\sin \theta+\cos \theta)^{2}-(\sin \theta \cos \theta)^{2} \\
& =S^{2}-P^{2} .
\end{aligned}
$$

As a result, we see that $1+2 P-P^{2}=S^{2}-P^{2}$, so $S= \pm(1-\sqrt{2})$. We want to maximize $1+S+P$, and since P is fixed, this is equivalent to maximizing S. Thus, we get $S=\sqrt{2}-1$, and hence, $1+S+P=1+(\sqrt{2}-1)+(1-\sqrt{2})=\boxed{1}$, which is our answer.
5. Compute the sum of the real solutions to $\lfloor x\rfloor\{x\}=2020 x$. Here, $\lfloor x\rfloor$ is defined as the greatest integer less than or equal to x, and $\{x\}=x-\lfloor x\rfloor$.
Answer: $-\frac{1}{2021}$
Solution: Noting that $x=\{x\}+\lfloor x\rfloor$, we can simplify the equation into $\lfloor x\rfloor\{x\}=2020\lfloor x\rfloor+$ $2020\{x\}$. By Simon's Favorite Factoring Trick, this factors to

$$
(\lfloor x\rfloor-2020)(\{x\}-2020)=2020^{2}
$$

However, we note that, because $0 \leq\{x\}<1$, we have $-2020 \leq\{x\}-2020<-2019$. Then $-\frac{2020^{2}}{2019}<\lfloor x\rfloor-2020 \leq-2020$, so $-\frac{2020}{2019}<\lfloor x\rfloor \leq 0$. However, $\lfloor x\rfloor$ is an integer, so it must be either 0 or -1 . If $\lfloor x\rfloor=0$, then we find that $x=0$ is a solution. If $\lfloor x\rfloor=-1$, then we can substitute this into the original expression to get $-1(x+1)=2020 x$ where solving yields $x=-\frac{1}{2021}$. Thus, the sum of the solutions is $-\frac{1}{2021}+0=-\frac{1}{2021}$.
6. Let f be a real function such that for all $x \neq 0, x \neq 1$,

$$
f(x)+f\left(-\frac{1}{x-1}\right)=\frac{9}{4 x^{2}}+f\left(1-\frac{1}{x}\right) .
$$

Compute $f\left(\frac{1}{2}\right)$.
Answer: $\frac{45}{8}$
Solution: The main motivation behind the problem is that $g(x)=1-\frac{1}{x}$ cycles as $x \rightarrow 1-\frac{1}{x} \rightarrow$ $\frac{-1}{x-1} \rightarrow x$. Given this, recognize that plugging in x and $1-\frac{1}{x}$ gives us the following equations side by side:

$$
\begin{aligned}
& f(x)+f\left(-\frac{1}{x-1}\right)-f\left(1-\frac{1}{x}\right)=\frac{9}{4 x^{2}}=\left(\frac{3}{2 x}\right)^{2} \\
& f\left(1-\frac{1}{x}\right)+f(x)-f\left(-\frac{1}{x-1}\right)=\frac{9}{4\left(1-\frac{1}{x}\right)^{2}}=\left(\frac{3 x}{2(x-1)}\right)^{2}
\end{aligned}
$$

Adding the equations together gives $2 f(x)=\left(\frac{3}{2 x}\right)^{2}+\left(\frac{3 x}{2(x-1)}\right)^{2}$ and dividing by 2 yields $f(x)=$ $\frac{1}{2}\left(\left(\frac{3}{2 x}\right)^{2}+\left(\frac{3 x}{2(x-1)}\right)^{2}\right)$. Evaluating this at $x=\frac{1}{2}$, we get $f\left(\frac{1}{2}\right)=\frac{45}{8}$.
7. Let $z_{1}, z_{2}, \ldots, z_{2020}$ be the roots of the polynomial $z^{2020}+z^{2019}+\cdots+z+1$. Compute

$$
\sum_{i=1}^{2020} \frac{1}{1-z_{i}^{2020}}
$$

Answer: 1010
Solution: First note that if z is a root of the given polynomial, then z is a root of

$$
(z-1)\left(z^{2020}+z^{2019}+\cdots+z+1\right)=z^{2021}-1 .
$$

Hence, the values z_{i} are the 2021st roots of unity except for 1 . Because 2020 is relatively prime to 2021 , the values z_{i}^{2020} are simply a permutation of the values z_{i}. That is to say,

$$
\sum_{i=1}^{2020} \frac{1}{1-z_{i}^{2020}}=\sum_{i=1}^{2020} \frac{1}{1-z_{i}}
$$

Now observe that the solution set $\left\{z_{i}\right\}$ is contained entirely in the circle $|z|=1$ and is symmetric about the real axis. This means that the set $\left\{1-z_{i}\right\}$ is contained entirely in the circle $|z|=$ $2 \cos (\arg z)$ (i.e. the polar graph $r=2 \cos \theta$) and is also symmetric about the real axis. Thus, the set $\left\{\frac{1}{1-z_{i}}\right\}$ is contained entirely in the set $|z|=\frac{1}{2} \sec (\arg z)$, and again, it is symmetric about the real axis. The set $|z|=\frac{1}{2} \sec (\arg z)$ is better identified as the set $\operatorname{Re}(z)=\frac{1}{2}$ (by multiplying each side of the equation by $\cos (\arg z)$), which means that

$$
\operatorname{Re} \sum_{i=1}^{2020} \frac{1}{1-z_{i}}=2020 \cdot \frac{1}{2}=1010
$$

Further, since this set is symmetric about the real axis, the imaginary part of the sum is equal to 0 , so the answer is 1010 .
8. Let $f(w)=w^{3}-r w^{2}+s w-\frac{4 \sqrt{2}}{27}$ denote a polynomial, where $r^{2}=\left(\frac{8 \sqrt{2}+10}{7}\right) s$. The roots of f correspond to the sides of a right triangle. Compute the smallest possible area of this triangle.
Answer: $\frac{\sqrt[3]{2}}{9}$
Solution: The roots must be in the form a, b, and $\sqrt{a^{2}+b^{2}}$. Then $a+b+\sqrt{a^{2}+b^{2}}=r$ and $a b+a \sqrt{a^{2}+b^{2}}+b \sqrt{a^{2}+b^{2}}=a b+(a+b) \sqrt{a^{2}+b^{2}}=s$. Let $x=\sqrt{a^{2}+b^{2}}, y=a+b, z=a b$. Thus, $x+y=r$ and $x y+z=s$. Note that $x^{2}+2 z=y^{2}$, so $z=\frac{y^{2}-x^{2}}{2}$, and thus $y^{2}+2 x y-x^{2}=2 s$. Now, let $r^{2}=\alpha s$, so that $\alpha=\frac{8 \sqrt{2}+10}{7}$. Then $(x+y)^{2}=\frac{\alpha}{2}\left(y^{2}+2 x y-x^{2}\right)$, or

$$
\left(1+\frac{\alpha}{2}\right) x^{2}+(2-\alpha) x y+\left(1-\frac{\alpha}{2}\right) y^{2}=0 .
$$

Note that solutions must be in the form of $x=k y$, as any solution (x, y) will have a corresponding solution ($m x, m y$), where m is some real number. Hence, plugging $x=k y$ and dividing by y, we get

$$
\left(1+\frac{\alpha}{2}\right) k^{2}+(2-\alpha) k+\left(1-\frac{\alpha}{2}\right)=0 .
$$

Now, plugging back in α, we get the equation $\left(\frac{12+4 \sqrt{2}}{7}\right) k^{2}+\left(\frac{4-8 \sqrt{2}}{7}\right) k+\left(\frac{2-4 \sqrt{2}}{7}\right)=0$ or, simplifying out the 7 's in the denominator, $(12+4 \sqrt{2}) k^{2}+(4-8 \sqrt{2}) k+(2-4 \sqrt{2})=0$. Solving the quadratic for k, we obtain

$$
\begin{aligned}
k & =\frac{8 \sqrt{2}-4 \pm \sqrt{(8 \sqrt{2}-4)^{2}+4(12+4 \sqrt{2})(4 \sqrt{2}-2)}}{2(12+4 \sqrt{2})} \\
& =\frac{8 \sqrt{2}-4 \pm \sqrt{176+96 \sqrt{2}}}{2(12+4 \sqrt{2})} \\
& =\frac{8 \sqrt{2}-4 \pm(12+4 \sqrt{2})}{2(12+4 \sqrt{2})} .
\end{aligned}
$$

Note that since both x and y are positive, k must also be positive, so we take the positive solution. Hence, $k=\frac{8 \sqrt{2}-4+(12+4 \sqrt{2})}{2(12+4 \sqrt{2})}=\frac{12 \sqrt{2}+8}{2(12+4 \sqrt{2})}=\frac{1}{\sqrt{2}}$. Hence we have $x=\frac{y}{\sqrt{2}}$. Now, by AM-GM,

$$
\frac{1}{\sqrt{2}} x=\sqrt{\frac{a^{2}+b^{2}}{2}} \geq \frac{a+b}{2}=\frac{y}{2} .
$$

Thus, $x \geq \frac{y}{\sqrt{2}}$ with equality at $a=b$. Using Vieta's on the condition given by the coefficient of the product term, we get $a b \sqrt{a^{2}+b^{2}}=a^{3} \sqrt{2}=\frac{4 \sqrt{2}}{27} \Longrightarrow a=\frac{\sqrt[3]{4}}{3}$. Thus, we have $a=b=\frac{\sqrt[3]{4}}{3}$, so the area is $\frac{1}{2} a b=\frac{\sqrt[3]{2}}{9}$.
9. Compute the sum of the positive integers $n \leq 100$ for which the polynomial $x^{n}+x+1$ can be written as the product of at least 2 polynomials of positive degree with integer coefficients.

Answer: 1648

Solution: If a polynomial $p(x)$ is reducible, then it may be written in the form $p(x)=f(x) g(x)$. The polynomial $p^{\prime}(x)=x^{\operatorname{deg}(p)} p(1 / x)$ is p but with the coefficients reversed. Suppose p and p^{\prime} do not share any roots. Then $p^{\prime}(x)=f^{\prime}(x) g^{\prime}(x)$, so $p p^{\prime}=k k^{\prime}$, where $k= \pm f g^{\prime}$ and $k \neq \pm p, p^{\prime}$. For p any polynomial, notice that the coefficient of x^{n} of $p p^{\prime}$ is the sum of the squares of the coefficients of p. Substituting $p(x)=x^{n}+x+1$, we find that the coefficient of x^{n} in $p p^{\prime}$ is 3 , indicating that k must be a sum of 3 monomials:

$$
\left(x^{n}+x^{n-1}+1\right)\left(x^{n}+x+1\right)=x^{2 n}+x^{2 n-1}+x^{n+1}+3 x^{n}+x^{n-1}+x+1 .
$$

Since the top coefficient of $p p^{\prime}$ is $x^{2 n}$ and the bottom coefficient is $1, k$ must be of the form $(-1)^{p_{1}} x^{n}+(-1)^{p_{2}} x^{a}+(-1)^{p_{1}}$. Multiplying $k k^{\prime}$ out, we get

$$
\begin{aligned}
k k^{\prime} & =\left((-1)^{p_{1}} x^{n}+(-1)^{p_{2}} x^{a}+(-1)^{p_{1}}\right)\left((-1)^{p_{1}} x^{n}+(-1)^{p_{2}} x^{n-a}+(-1)^{p_{1}}\right) \\
& =x^{2 n}+(-1)^{p_{1}+p_{2}} x^{2 n-a}+3 x^{n}+(-1)^{p_{1}+p_{2}} x^{n+a}+(-1)^{p_{1}+p_{2}} x^{a}+(-1)^{p_{1}+p_{2}} x^{n-a}+1
\end{aligned}
$$

so $x^{2 n-1}+x^{n+1}+x^{n-1}+x=(-1)^{p_{1}+p_{2}}\left(x^{n+a}+x^{a}+x^{n-a}+x^{2 n-a}\right)$. It becomes clear that a must equal 1 or $n-1$ and $p_{2}=p_{1}$.
Thus, if $x^{n}+x+1$ and $x^{n}+x^{n-1}+1$ share no roots, then they are irreducible. Conversely, if they do share roots, then these polynomials will have a nontrivial common factor if $n>2$ and hence not be irreducible. Therefore, we notice that any roots of those two polynomials must be a root of $x^{n-2}-1$. Let ω be such a root. Then $\omega^{n}+\omega+1=\omega^{2}+\omega+1=0$, so ω must be a third root of unity and so $n-2 \equiv 0(\bmod 3)$. Thus, $x^{n}+x+1$ is irreducible if and only if $n=2$ or $n \not \equiv 2(\bmod 3)$. Summing all desired $n \leq 100$ up, we get $16(5+98)=1648$.
10. Given a positive integer n, define $f_{n}(x)$ to be the number of square-free positive integers k such that $k x \leq n$. Then, define $v(n)$ as

$$
v(n)=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{n}\left(i^{2}\right)-6 f_{n}(i j)+f_{n}\left(j^{2}\right) .
$$

Compute the largest positive integer $2 \leq n \leq 100$ for which $v(n)-v(n-1)$ is negative. (Note: A square-free positive integer is a positive integer that is not divisible by the square of any prime.)
Answer: 60

Solution: For some positive integer n, denote $p(n)$ to be the number of distinct prime factors of n. Note that $p(1)=0$. Furthermore, denote $\mathcal{F}(x)$ to be the number of square-free positive integers less than or equal to x for any nonnegative real number x. We first prove two lemmas.
Lemma 1. For any nonnegative real number x and positive integer $a \geq\lfloor x\rfloor, \sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i^{2}}\right)=\lfloor x\rfloor$.
Proof. Note that because a square-free number k counted in $\mathcal{F}\left(\frac{x}{i^{2}}\right)$ must satisfy $k i^{2} \leq x$, the sum $\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i^{2}}\right)$ counts the number of ways a positive integer less than or equal to x can be represented as the product of a square-free number and a square. Since for any such n, there exists exactly one way to represent $n=k i^{2}$, where k is square-free and i is a positive integer, we achieve $\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i^{2}}\right)=\lfloor x\rfloor$.
Then, note that for any $i>\lfloor x\rfloor$ we have $i^{2} \geq i>x$, meaning that $\frac{x}{i^{2}}<1$. Since the smallest square-free number is 1 , we have $\mathcal{F}\left(\frac{x}{i^{2}}\right)=0$, meaning $\sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i^{2}}\right)=\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i^{2}}\right)+$ $\sum_{i=\lfloor x\rfloor+1}^{a} \mathcal{F}\left(\frac{x}{i^{2}}\right)=\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i^{2}}\right)=\lfloor x\rfloor$, as desired.

Lemma 2. For any nonnegative real number x and positive integer $a \geq\lfloor x\rfloor, \sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i}\right)=$ $\sum_{i=1}^{\lfloor x\rfloor} 2^{p(i)}$.

Proof. Similar to the proof of Lemma 1, we can note that a square-free number k counted in $\mathcal{F}\left(\frac{x}{i}\right)$ must satisfy $k i \leq x$, and therefore, the sum $\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i}\right)$ counts the number of ways a positive integer less than or equal to x can be represented as the product of a square-free number and a positive integer. For each positive integer n, consider $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ to be the prime factorization of n, where $p_{i} \neq p_{j}$ for $i \neq j, e_{i}>0$ for all i, and $k=p(n)$. Then, note that the number of ways n can be represented as the product of a square-free number and a positive integer is simply equal to the number of square-free factors of n. Because a square-free factor of n is of the form $n^{\prime}=p_{1}^{e_{1}^{\prime}} p_{2}^{e_{2}^{\prime}} \cdots p_{k}^{e_{k}^{\prime}}$, where $e_{i}^{\prime} \leq 1$ for all i, there are exactly $2^{k}=2^{p(n)}$ square-free factors of n. Summing over all $n \leq x$, we obtain that $\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i}\right)=\sum_{i=1}^{\lfloor x\rfloor} 2^{p(i)}$.
Then, note that for any $i>\lfloor x\rfloor$, we have $i>x$, meaning $\frac{x}{i}<1$. Since the smallest square-free number is 1, we have $\mathcal{F}\left(\frac{x}{i}\right)=0$, meaning $\sum_{i=1}^{a}=\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i}\right)+\sum_{i=\lfloor x\rfloor+1}^{a} \mathcal{F}\left(\frac{x}{i}\right)=\sum_{i=1}^{\lfloor x\rfloor} \mathcal{F}\left(\frac{x}{i}\right)=$ $\sum_{i=1}^{\lfloor x\rfloor} 2^{p(i)}$, as desired.

Now, note that a square-free positive integer k is only counted by $f_{n}(x)$ if and only if $k \leq \frac{n}{x}$; therefore, $f_{n}(x)=\mathcal{F}\left(\frac{n}{x}\right)$. Thus, we can rewrite $v(n)$ as

$$
\begin{aligned}
v(n) & =\sum_{i=1}^{n} \sum_{j=1}^{n} f_{n}\left(i^{2}\right)-6 f_{n}(i j)+f_{n}\left(j^{2}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{F}\left(\frac{n}{i^{2}}\right)-6 \mathcal{F}\left(\frac{n}{i j}\right)+\mathcal{F}\left(\frac{n}{j^{2}}\right) \\
& =2 n \sum_{i=1}^{n} \mathcal{F}\left(\frac{n}{i^{2}}\right)-6 \sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{F}\left(\frac{n}{i j}\right) \\
& =2 n\lfloor n\rfloor-6 \sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{F}\left(\frac{\left(\frac{n}{i}\right)}{j}\right) \\
& =2 n^{2}-6 \sum_{i=1}^{n} \sum_{j=1}^{\left\lfloor\frac{n}{i}\right\rfloor} 2^{p(j)} \\
& =2 n^{2}-6 \sum_{i=1}^{n}\left\lfloor\frac{n}{i}\right\rfloor 2^{p(i)} \\
& =2 n^{2}-6 \sum_{i=1}^{n} \sum_{d \mid i} 2^{p(d)} \\
& =6\left(\frac{n^{2}}{3}-\sum_{i=1}^{n} \sum_{d \mid i} 2^{p(d)}\right)
\end{aligned}
$$

by applying our two lemmas. Now, we can simply subtract $v(n)-v(n-1)$ to obtain

$$
\begin{aligned}
v(n)-v(n-1) & =6\left(\frac{n^{2}}{3}-\sum_{i=1}^{n} \sum_{d \mid i} 2^{p(d)}\right)-6\left(\frac{(n-1)^{2}}{3}-\sum_{i=1}^{n-1} \sum_{d \mid i} 2^{p(d)}\right) \\
& =6\left(\frac{2 n-1}{3}-\sum_{d \mid n} 2^{p(d)}\right)
\end{aligned}
$$

It then suffices to find the maximum $n \geq 2$ such that $\sum_{d \mid n} 2^{p(d)}>\frac{2 n-1}{3}$. For any positive integer n, let its prime factorization be $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, where $p_{i} \neq p_{j}$ for $i \neq j, e_{i}>0$ for all i, and $k=p(n)$. We will then denote $E(n)=\prod_{i=1}^{k}\left(2 e_{i}+1\right)$ and claim that $\sum_{d \mid n} 2^{p(d)}=E(n)$ for all n.

Proof. Consider the generating function $\prod_{i=1}^{k}\left(1+2 p_{i}+2 p_{i}^{2}+\cdots+2 p_{i}^{e_{i}}\right)$. Each factor

$$
n^{\prime}=p_{1}^{e_{1}^{\prime}} p_{2}^{e_{2}^{\prime}} \cdots p_{k}^{e_{k}^{\prime}}
$$

of n is represented by exactly one term in the expansion. Furthermore, note that for every prime factor p_{i}, the coefficient of n^{\prime} is multiplied by 2 if p_{i} divides n^{\prime} and is multiplied by 1 otherwise. Thus, the coefficient of n^{\prime} in the expansion of $\prod_{i=1}^{k}\left(1+2 p_{i}+2 p_{i}^{2}+\cdots+2 p_{i}^{e_{i}}\right)$ is exactly $2^{p\left(n^{\prime}\right)}$. Then, to compute the value of $\sum_{d \mid n} 2^{p(d)}$, we want to find the sum of all coefficients of the generating function, which is simply

$$
\prod_{i=1}^{k}(1+\underbrace{2+2+\cdots+2}_{e_{i} \text { times }})=\prod_{i=1}^{k}\left(2 e_{i}+1\right)=E(n),
$$

as desired.
Now, we want to find the maximum n such that $E(n)>\frac{2 n-1}{3}$. Heuristically, $E(n)$ is maximal when n contains many prime factors. Simply by testing different distributions of prime factors, we can see that the maximal possible value of n is 60 .

Prime distribution	$E(n)$	$\max (n)$
$\{6\}$	$13 \leq \frac{2 \cdot 64-1}{3}$	Not possible
$\{5,1\}$	$33 \leq \frac{2.96-1}{3}$	Not possible
$\{5\}$	$11 \leq \frac{2.32-1}{3}$	Not possible
$\{4,1\}$	$27 \leq \frac{2.48-1}{3}$	Not possible
$\{3,2\}$	$35 \leq \frac{2.72-1}{3}$	Not possible
$\{4\}$	$9 \leq \frac{2 \cdot 16-1}{3}$	Not possible
$\{3,1\}$	21	24
$\{2,1,1\}$	45	60

Since $\frac{2 \cdot 60-1}{3}=\frac{119}{3}$, we do not need to test any value n for which $E(n) \leq 39$, meaning 60 is the maximum possible value of n, and we are done.

Remark. It is provable that 60 is the maximum value of n in general without imposing an upper bound of 100 . The inequality $\prod_{i=1}^{k}\left(2 e_{i}+1\right)>p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ limits n due to size reasons, as the left-hand side is linear in e_{i}, while the right-hand side is exponential.

