1. Let x be a real number such that $x^2 - x + 1 = 7$ and $x^2 + x + 1 = 13$. Compute the value of x^4 .

Answer: 81

Solution: Subtracting the first equation from the second yields 2x = 6, which implies x = 3. Thus, $x^4 = 3^4 = \boxed{81}$.

2. Let f and g be linear functions such that f(g(2021)) - g(f(2021)) = 20. Compute f(g(2022)) - g(f(2022)). (Note: A function h is linear if h(x) = ax + b for all real numbers x.)

Answer: 20

Solution: For real numbers a, b, c, and d, let f(x) = ax + b, and let g(x) = cx + d. Observe that

$$f(g(x)) - g(f(x)) = ad + b - bc - d,$$

so this value is constant for each x. Therefore, the answer is 20.

3. Let x be a solution to the equation $\lfloor x \lfloor x + 2 \rfloor + 2 \rfloor = 10$. Compute the smallest C such that for any solution x, x < C. Here, $\lfloor m \rfloor$ is defined as the greatest integer less than or equal to m. For example, $\lfloor 3 \rfloor = 3$ and $\lfloor -4.25 \rfloor = -5$.

Answer: $\frac{9}{4}$

Solution: If $\lfloor x \lfloor x+2 \rfloor + 2 \rfloor = 10$, then $x \lfloor x+2 \rfloor + 2 < 11$, which means that $x \lfloor x+2 \rfloor < 9$. To do some bounding, recognize that if x = 2, then $x \lfloor x+2 \rfloor = 8$. In addition, if x = 3, then $x \lfloor x+2 \rfloor = 15$. Thus, for our inequality to be adhered, we must have 2 < x < 3, which means that $\lfloor x \rfloor = 2$. Thus, our expression becomes $4x < 9 \implies x < \frac{9}{4}$, so the smallest possible value of C is $\boxed{\frac{9}{4}}$.

4. Let θ be a real number such that $1 + \sin 2\theta - (\frac{1}{2}\sin 2\theta)^2 = 0$. Compute the maximum value of $(1 + \sin \theta)(1 + \cos \theta)$.

Answer: 1

Solution: Let $S = \sin \theta + \cos \theta$ and $P = \sin \theta \cos \theta$. We can see that the value which we wish to compute is 1 + S + P. By sine properties, we see that

$$1 + \sin 2\theta - \left(\frac{1}{2}\sin 2\theta\right)^2 = 1 + 2\sin\theta\cos\theta - (\sin\theta\cos\theta)^2 = 1 + 2P - P^2 = 0,$$

so $P = 1 \pm \sqrt{2}$. However, P can't be greater than 1, since sine and cosine have an upper bound of 1, so $P = 1 - \sqrt{2}$. Expanding the original equation slightly differently yields

$$1 + 2\sin\theta\cos\theta - (\sin\theta\cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta - (\sin\theta\cos\theta)^2$$
$$= (\sin\theta + \cos\theta)^2 - (\sin\theta\cos\theta)^2$$
$$= S^2 - P^2.$$

As a result, we see that $1 + 2P - P^2 = S^2 - P^2$, so $S = \pm(1 - \sqrt{2})$. We want to maximize 1 + S + P, and since P is fixed, this is equivalent to maximizing S. Thus, we get $S = \sqrt{2} - 1$, and hence, $1 + S + P = 1 + (\sqrt{2} - 1) + (1 - \sqrt{2}) = 1$, which is our answer.

5. Compute the sum of the real solutions to $\lfloor x \rfloor \{x\} = 2020x$. Here, $\lfloor x \rfloor$ is defined as the greatest integer less than or equal to x, and $\{x\} = x - \lfloor x \rfloor$.

Answer: $-\frac{1}{2021}$

Solution: Noting that $x = \{x\} + \lfloor x \rfloor$, we can simplify the equation into $\lfloor x \rfloor \{x\} = 2020 \lfloor x \rfloor + 2020 \{x\}$. By Simon's Favorite Factoring Trick, this factors to

$$(\lfloor x \rfloor - 2020)(\{x\} - 2020) = 2020^2$$

However, we note that, because $0 \le \{x\} < 1$, we have $-2020 \le \{x\} - 2020 < -2019$. Then $-\frac{2020^2}{2019} < \lfloor x \rfloor - 2020 \le -2020$, so $-\frac{2020}{2019} < \lfloor x \rfloor \le 0$. However, $\lfloor x \rfloor$ is an integer, so it must be either 0 or -1. If $\lfloor x \rfloor = 0$, then we find that x = 0 is a solution. If $\lfloor x \rfloor = -1$, then we can substitute this into the original expression to get -1(x+1) = 2020x where solving yields $x = -\frac{1}{2021}$. Thus, the sum of the solutions is $-\frac{1}{2021} + 0 = \boxed{-\frac{1}{2021}}$.

6. Let f be a real function such that for all $x \neq 0, x \neq 1$,

$$f(x) + f\left(-\frac{1}{x-1}\right) = \frac{9}{4x^2} + f\left(1-\frac{1}{x}\right).$$

Compute $f\left(\frac{1}{2}\right)$.

Answer: $\frac{45}{8}$

Solution: The main motivation behind the problem is that $g(x) = 1 - \frac{1}{x}$ cycles as $x \to 1 - \frac{1}{x} \to \frac{-1}{x-1} \to x$. Given this, recognize that plugging in x and $1 - \frac{1}{x}$ gives us the following equations side by side:

$$f(x) + f\left(-\frac{1}{x-1}\right) - f\left(1-\frac{1}{x}\right) = \frac{9}{4x^2} = \left(\frac{3}{2x}\right)^2$$
$$f\left(1-\frac{1}{x}\right) + f(x) - f\left(-\frac{1}{x-1}\right) = \frac{9}{4\left(1-\frac{1}{x}\right)^2} = \left(\frac{3x}{2(x-1)}\right)^2$$

Adding the equations together gives $2f(x) = \left(\frac{3}{2x}\right)^2 + \left(\frac{3x}{2(x-1)}\right)^2$ and dividing by 2 yields $f(x) = \frac{1}{2}\left(\left(\frac{3}{2x}\right)^2 + \left(\frac{3x}{2(x-1)}\right)^2\right)$. Evaluating this at $x = \frac{1}{2}$, we get $f\left(\frac{1}{2}\right) = \boxed{\frac{45}{8}}$.

7. Let $z_1, z_2, ..., z_{2020}$ be the roots of the polynomial $z^{2020} + z^{2019} + \cdots + z + 1$. Compute

$$\sum_{i=1}^{2020} \frac{1}{1 - z_i^{2020}}$$

Answer: 1010

Solution: First note that if z is a root of the given polynomial, then z is a root of

$$(z-1)(z^{2020}+z^{2019}+\cdots+z+1)=z^{2021}-1.$$

Hence, the values z_i are the 2021st roots of unity except for 1. Because 2020 is relatively prime to 2021, the values z_i^{2020} are simply a permutation of the values z_i . That is to say,

$$\sum_{i=1}^{2020} \frac{1}{1 - z_i^{2020}} = \sum_{i=1}^{2020} \frac{1}{1 - z_i}.$$

Now observe that the solution set $\{z_i\}$ is contained entirely in the circle |z| = 1 and is symmetric about the real axis. This means that the set $\{1 - z_i\}$ is contained entirely in the circle $|z| = 2\cos(\arg z)$ (i.e. the polar graph $r = 2\cos\theta$) and is also symmetric about the real axis. Thus, the set $\{\frac{1}{1-z_i}\}$ is contained entirely in the set $|z| = \frac{1}{2}\sec(\arg z)$, and again, it is symmetric about the real axis. The set $|z| = \frac{1}{2}\sec(\arg z)$ is better identified as the set $\operatorname{Re}(z) = \frac{1}{2}$ (by multiplying each side of the equation by $\cos(\arg z)$), which means that

$$\operatorname{Re}\sum_{i=1}^{2020} \frac{1}{1-z_i} = 2020 \cdot \frac{1}{2} = 1010.$$

Further, since this set is symmetric about the real axis, the imaginary part of the sum is equal to 0, so the answer is 1010.

8. Let $f(w) = w^3 - rw^2 + sw - \frac{4\sqrt{2}}{27}$ denote a polynomial, where $r^2 = \left(\frac{8\sqrt{2}+10}{7}\right)s$. The roots of f correspond to the sides of a right triangle. Compute the smallest possible area of this triangle. Answer: $\frac{\sqrt[3]{2}}{9}$

Solution: The roots must be in the form $a, b, \text{ and } \sqrt{a^2 + b^2}$. Then $a + b + \sqrt{a^2 + b^2} = r$ and $ab + a\sqrt{a^2 + b^2} + b\sqrt{a^2 + b^2} = ab + (a + b)\sqrt{a^2 + b^2} = s$. Let $x = \sqrt{a^2 + b^2}$, y = a + b, z = ab. Thus, x + y = r and xy + z = s. Note that $x^2 + 2z = y^2$, so $z = \frac{y^2 - x^2}{2}$, and thus $y^2 + 2xy - x^2 = 2s$. Now, let $r^2 = \alpha s$, so that $\alpha = \frac{8\sqrt{2} + 10}{7}$. Then $(x + y)^2 = \frac{\alpha}{2}(y^2 + 2xy - x^2)$, or

$$\left(1+\frac{\alpha}{2}\right)x^2 + \left(2-\alpha\right)xy + \left(1-\frac{\alpha}{2}\right)y^2 = 0.$$

Note that solutions must be in the form of x = ky, as any solution (x, y) will have a corresponding solution (mx, my), where m is some real number. Hence, plugging x = ky and dividing by y, we get

$$\left(1+\frac{\alpha}{2}\right)k^2 + (2-\alpha)k + \left(1-\frac{\alpha}{2}\right) = 0.$$

Now, plugging back in α , we get the equation $\left(\frac{12+4\sqrt{2}}{7}\right)k^2 + \left(\frac{4-8\sqrt{2}}{7}\right)k + \left(\frac{2-4\sqrt{2}}{7}\right) = 0$ or, simplifying out the 7's in the denominator, $(12+4\sqrt{2})k^2 + (4-8\sqrt{2})k + (2-4\sqrt{2}) = 0$. Solving the quadratic for k, we obtain

$$k = \frac{8\sqrt{2} - 4 \pm \sqrt{(8\sqrt{2} - 4)^2 + 4(12 + 4\sqrt{2})(4\sqrt{2} - 2)}}{2(12 + 4\sqrt{2})}$$
$$= \frac{8\sqrt{2} - 4 \pm \sqrt{176 + 96\sqrt{2}}}{2(12 + 4\sqrt{2})}$$
$$= \frac{8\sqrt{2} - 4 \pm (12 + 4\sqrt{2})}{2(12 + 4\sqrt{2})}.$$

Note that since both x and y are positive, k must also be positive, so we take the positive solution. Hence, $k = \frac{8\sqrt{2}-4+(12+4\sqrt{2})}{2(12+4\sqrt{2})} = \frac{12\sqrt{2}+8}{2(12+4\sqrt{2})} = \frac{1}{\sqrt{2}}$. Hence we have $x = \frac{y}{\sqrt{2}}$. Now, by AM-GM,

$$\frac{1}{\sqrt{2}}x = \sqrt{\frac{a^2 + b^2}{2}} \ge \frac{a + b}{2} = \frac{y}{2}.$$

Thus, $x \ge \frac{y}{\sqrt{2}}$ with equality at a = b. Using Vieta's on the condition given by the coefficient of the product term, we get $ab\sqrt{a^2 + b^2} = a^3\sqrt{2} = \frac{4\sqrt{2}}{27} \implies a = \frac{\sqrt[3]{4}}{3}$. Thus, we have $a = b = \frac{\sqrt[3]{4}}{3}$, so the area is $\frac{1}{2}ab = \boxed{\frac{\sqrt[3]{2}}{9}}$.

9. Compute the sum of the positive integers $n \leq 100$ for which the polynomial $x^n + x + 1$ can be written as the product of at least 2 polynomials of positive degree with integer coefficients.

Answer: 1648

Solution: If a polynomial p(x) is reducible, then it may be written in the form p(x) = f(x)g(x). The polynomial $p'(x) = x^{\deg(p)}p(1/x)$ is p but with the coefficients reversed. Suppose p and p' do not share any roots. Then p'(x) = f'(x)g'(x), so pp' = kk', where $k = \pm fg'$ and $k \neq \pm p, p'$. For p any polynomial, notice that the coefficient of x^n of pp' is the sum of the squares of the coefficients of p. Substituting $p(x) = x^n + x + 1$, we find that the coefficient of x^n in pp' is 3, indicating that k must be a sum of 3 monomials:

$$(x^{n} + x^{n-1} + 1)(x^{n} + x + 1) = x^{2n} + x^{2n-1} + x^{n+1} + 3x^{n} + x^{n-1} + x + 1.$$

Since the top coefficient of pp' is x^{2n} and the bottom coefficient is 1, k must be of the form $(-1)^{p_1}x^n + (-1)^{p_2}x^a + (-1)^{p_1}$. Multiplying kk' out, we get

$$kk' = ((-1)^{p_1}x^n + (-1)^{p_2}x^a + (-1)^{p_1})\left((-1)^{p_1}x^n + (-1)^{p_2}x^{n-a} + (-1)^{p_1}\right)$$

= $x^{2n} + (-1)^{p_1+p_2}x^{2n-a} + 3x^n + (-1)^{p_1+p_2}x^{n+a} + (-1)^{p_1+p_2}x^a + (-1)^{p_1+p_2}x^{n-a} + 1$

so $x^{2n-1} + x^{n+1} + x^{n-1} + x = (-1)^{p_1+p_2}(x^{n+a} + x^a + x^{n-a} + x^{2n-a})$. It becomes clear that a must equal 1 or n-1 and $p_2 = p_1$.

Thus, if $x^n + x + 1$ and $x^n + x^{n-1} + 1$ share no roots, then they are irreducible. Conversely, if they do share roots, then these polynomials will have a nontrivial common factor if n > 2 and hence not be irreducible. Therefore, we notice that any roots of those two polynomials must be a root of $x^{n-2} - 1$. Let ω be such a root. Then $\omega^n + \omega + 1 = \omega^2 + \omega + 1 = 0$, so ω must be a third root of unity and so $n - 2 \equiv 0 \pmod{3}$. Thus, $x^n + x + 1$ is irreducible if and only if n = 2or $n \neq 2 \pmod{3}$. Summing all desired $n \leq 100$ up, we get $16(5 + 98) = \boxed{1648}$.

10. Given a positive integer n, define $f_n(x)$ to be the number of square-free positive integers k such that $kx \leq n$. Then, define v(n) as

$$v(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} f_n(i^2) - 6f_n(ij) + f_n(j^2).$$

Compute the largest positive integer $2 \le n \le 100$ for which v(n) - v(n-1) is negative. (Note: A square-free positive integer is a positive integer that is not divisible by the square of any prime.)

Answer: 60

Solution: For some positive integer n, denote p(n) to be the number of distinct prime factors of n. Note that p(1) = 0. Furthermore, denote $\mathcal{F}(x)$ to be the number of square-free positive integers less than or equal to x for any nonnegative real number x. We first prove two lemmas.

Lemma 1. For any nonnegative real number x and positive integer $a \ge \lfloor x \rfloor$, $\sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i^2}\right) = \lfloor x \rfloor$.

Proof. Note that because a square-free number k counted in $\mathcal{F}\left(\frac{x}{i^2}\right)$ must satisfy $ki^2 \leq x$, the sum $\sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i^2}\right)$ counts the number of ways a positive integer less than or equal to x can be represented as the product of a square-free number and a square. Since for any such n, there exists exactly one way to represent $n = ki^2$, where k is square-free and i is a positive integer, we achieve $\sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i^2}\right) = \lfloor x \rfloor$.

Then, note that for any $i > \lfloor x \rfloor$ we have $i^2 \ge i > x$, meaning that $\frac{x}{i^2} < 1$. Since the smallest square-free number is 1, we have $\mathcal{F}\left(\frac{x}{i^2}\right) = 0$, meaning $\sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i^2}\right) = \sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i^2}\right) + \sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i^2}\right) = \sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i^2}\right)$

$$\sum_{i=\lfloor x \rfloor+1}^{a} \mathcal{F}\left(\frac{x}{i^2}\right) = \sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i^2}\right) = \lfloor x \rfloor, \text{ as desired.}$$

Lemma 2. For any nonnegative real number x and positive integer $a \ge \lfloor x \rfloor$, $\sum_{i=1}^{a} \mathcal{F}\left(\frac{x}{i}\right) = \sum_{i=1}^{\lfloor x \rfloor} 2^{p(i)}$.

Proof. Similar to the proof of **Lemma 1**, we can note that a square-free number k counted in $\mathcal{F}\left(\frac{x}{i}\right)$ must satisfy $ki \leq x$, and therefore, the sum $\sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i}\right)$ counts the number of ways a positive integer less than or equal to x can be represented as the product of a square-free number and a positive integer. For each positive integer n, consider $p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ to be the prime factorization of n, where $p_i \neq p_j$ for $i \neq j$, $e_i > 0$ for all i, and k = p(n). Then, note that the number of ways n can be represented as the product of a square-free number and a positive integer is simply equal to the number of square-free factors of n. Because a square-free factor of n is of the form $n' = p_1^{e'_1} p_2^{e'_2} \cdots p_k^{e'_k}$, where $e'_i \leq 1$ for all i, there are exactly $2^k = 2^{p(n)}$ square-free factors of n. Summing over all $n \leq x$, we obtain that $\sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i}\right) = \sum_{i=1}^{\lfloor x \rfloor} 2^{p(i)}$.

Then, note that for any $i > \lfloor x \rfloor$, we have i > x, meaning $\frac{x}{i} < 1$. Since the smallest square-free number is 1, we have $\mathcal{F}\left(\frac{x}{i}\right) = 0$, meaning $\sum_{i=1}^{a} = \sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i}\right) + \sum_{i=\lfloor x \rfloor+1}^{a} \mathcal{F}\left(\frac{x}{i}\right) = \sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i}\right) = \sum_{i=1}^{\lfloor x \rfloor} \mathcal{F}\left(\frac{x}{i}\right)$

$$\sum_{i=1}^{\lfloor x \rfloor} 2^{p(i)}, \text{ as desired.} \qquad \Box$$

Now, note that a square-free positive integer k is only counted by $f_n(x)$ if and only if $k \leq \frac{n}{x}$; therefore, $f_n(x) = \mathcal{F}\left(\frac{n}{x}\right)$. Thus, we can rewrite v(n) as

$$\begin{aligned} v(n) &= \sum_{i=1}^{n} \sum_{j=1}^{n} f_n(i^2) - 6f_n(ij) + f_n(j^2) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{F}\left(\frac{n}{i^2}\right) - 6\mathcal{F}\left(\frac{n}{ij}\right) + \mathcal{F}\left(\frac{n}{j^2}\right) \\ &= 2n \sum_{i=1}^{n} \mathcal{F}\left(\frac{n}{i^2}\right) - 6\sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{F}\left(\frac{n}{ij}\right) \\ &= 2n \lfloor n \rfloor - 6\sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{F}\left(\frac{\left(\frac{n}{i}\right)}{j}\right) \\ &= 2n^2 - 6\sum_{i=1}^{n} \sum_{j=1}^{\left\lfloor\frac{n}{i}\right\rfloor} 2^{p(j)} \\ &= 2n^2 - 6\sum_{i=1}^{n} \left\lfloor\frac{n}{i}\right\rfloor 2^{p(i)} \\ &= 2n^2 - 6\sum_{i=1}^{n} \sum_{d|i} 2^{p(d)} \\ &= 6\left(\frac{n^2}{3} - \sum_{i=1}^{n} \sum_{d|i} 2^{p(d)}\right) \end{aligned}$$

by applying our two lemmas. Now, we can simply subtract v(n) - v(n-1) to obtain

$$v(n) - v(n-1) = 6\left(\frac{n^2}{3} - \sum_{i=1}^n \sum_{d|i} 2^{p(d)}\right) - 6\left(\frac{(n-1)^2}{3} - \sum_{i=1}^{n-1} \sum_{d|i} 2^{p(d)}\right)$$
$$= 6\left(\frac{2n-1}{3} - \sum_{d|n} 2^{p(d)}\right)$$

It then suffices to find the maximum $n \ge 2$ such that $\sum_{d|n} 2^{p(d)} > \frac{2n-1}{3}$. For any positive integer n, let its prime factorization be $p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, where $p_i \ne p_j$ for $i \ne j$, $e_i > 0$ for all i, and k = p(n). We will then denote $E(n) = \prod_{i=1}^{k} (2e_i + 1)$ and claim that $\sum_{d|n} 2^{p(d)} = E(n)$ for all n.

Proof. Consider the generating function $\prod_{i=1}^{k} (1 + 2p_i + 2p_i^2 + \dots + 2p_i^{e_i})$. Each factor $n' = p_1^{e'_1} p_2^{e'_2} \cdots p_k^{e'_k}$

of *n* is represented by exactly one term in the expansion. Furthermore, note that for every prime factor p_i , the coefficient of n' is multiplied by 2 if p_i divides n' and is multiplied by 1 otherwise. Thus, the coefficient of n' in the expansion of $\prod_{i=1}^{k} (1 + 2p_i + 2p_i^2 + \dots + 2p_i^{e_i})$ is exactly $2^{p(n')}$. Then, to compute the value of $\sum_{d|n} 2^{p(d)}$, we want to find the sum of all coefficients

of the generating function, which is simply

$$\prod_{i=1}^{k} \left(1 + \underbrace{2 + 2 + \dots + 2}_{e_i \text{ times}} \right) = \prod_{i=1}^{k} (2e_i + 1) = E(n),$$

as desired.

Now, we want to find the maximum n such that $E(n) > \frac{2n-1}{3}$. Heuristically, E(n) is maximal when n contains many prime factors. Simply by testing different distributions of prime factors, we can see that the maximal possible value of n is 60.

Prime distribution	E(n)	$\max(n)$
$\{6\}$	$13 \le \frac{2 \cdot 64 - 1}{3}$	Not possible
$\{5,1\}$	$33 \le \frac{2 \cdot 96 - 1}{3}$	Not possible
$\{5\}$	$11 \le \frac{2 \cdot 32 - 1}{3}$	Not possible
$\{4,1\}$	$27 \le \frac{2 \cdot 48 - 1}{3}$	Not possible
$\{3, 2\}$	$35 \le \frac{2 \cdot 72 - 1}{3}$	Not possible
{4}	$9 \le \frac{2 \cdot 16 - 1}{3}$	Not possible
$\{3,1\}$	21	24
$\{2, 1, 1\}$	45	60

Since $\frac{2\cdot 60-1}{3} = \frac{119}{3}$, we do not need to test any value *n* for which $E(n) \leq 39$, meaning 60 is the maximum possible value of *n*, and we are done.

Remark. It is provable that 60 is the maximum value of n in general without imposing an upper bound of 100. The inequality $\prod_{i=1}^{k} (2e_i + 1) > p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ limits n due to size reasons, as the left-hand side is linear in e_i , while the right-hand side is exponential.