Time limit: 60 minutes.
Instructions: This test contains 10 short answer questions. All answers must be expressed in simplest form unless specified otherwise.
No calculators.

1. Let x be a real number such that $x^{2}-x+1=7$ and $x^{2}+x+1=13$. Compute the value of x^{4}.
2. Let f and g be linear functions such that $f(g(2021))-g(f(2021))=20$. Compute $f(g(2022))-$ $g(f(2022))$. (Note: A function h is linear if $h(x)=a x+b$ for all real numbers x.)
3. Let x be a solution to the equation $\lfloor x\lfloor x+2\rfloor+2\rfloor=10$. Compute the smallest C such that for any solution $x, x<C$. Here, $\lfloor m\rfloor$ is defined as the greatest integer less than or equal to m. For example, $\lfloor 3\rfloor=3$ and $\lfloor-4.25\rfloor=-5$.
4. Let θ be a real number such that $1+\sin 2 \theta-\left(\frac{1}{2} \sin 2 \theta\right)^{2}=0$. Compute the maximum value of $(1+\sin \theta)(1+\cos \theta)$.
5. Compute the sum of the real solutions to $\lfloor x\rfloor\{x\}=2020 x$. Here, $\lfloor x\rfloor$ is defined as the greatest integer less than or equal to x, and $\{x\}=x-\lfloor x\rfloor$.
6. Let f be a real function such that for all $x \neq 0, x \neq 1$,

$$
f(x)+f\left(-\frac{1}{x-1}\right)=\frac{9}{4 x^{2}}+f\left(1-\frac{1}{x}\right) .
$$

Compute $f\left(\frac{1}{2}\right)$.
7. Let $z_{1}, z_{2}, \ldots, z_{2020}$ be the roots of the polynomial $z^{2020}+z^{2019}+\cdots+z+1$. Compute

$$
\sum_{i=1}^{2020} \frac{1}{1-z_{i}^{2020}}
$$

8. Let $f(w)=w^{3}-r w^{2}+s w-\frac{4 \sqrt{2}}{27}$ denote a polynomial, where $r^{2}=\left(\frac{8 \sqrt{2}+10}{7}\right) s$. The roots of f correspond to the sides of a right triangle. Compute the smallest possible area of this triangle.
9. Compute the sum of the positive integers $n \leq 100$ for which the polynomial $x^{n}+x+1$ can be written as the product of at least 2 polynomials of positive degree with integer coefficients.
10. Given a positive integer n, define $f_{n}(x)$ to be the number of square-free positive integers k such that $k x \leq n$. Then, define $v(n)$ as

$$
v(n)=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{n}\left(i^{2}\right)-6 f_{n}(i j)+f_{n}\left(j^{2}\right) .
$$

Compute the largest positive integer $2 \leq n \leq 100$ for which $v(n)-v(n-1)$ is negative. (Note: A square-free positive integer is a positive integer that is not divisible by the square of any prime.)

