1. An *exterior angle* is the supplementary angle to an interior angle in a polygon. What is the sum of the exterior angles of a triangle and dodecagon (12-gon), in degrees?

Answer: 720

Solution: For any polygon, the sum of the exterior angles is 360° . The sum of the exterior angles of a triangle and dodecagon are each 360° , and $360^{\circ} \cdot 2 = \boxed{720}^{\circ}$.

2. Let $\eta \in [0, 1]$ be a relative measure of material absorbence. η values for materials combined together are additive. η for a napkin is 10 times that of a sheet of paper, and a cardboard roll has $\eta = 0.75$. Justin can create a makeshift cup with $\eta = 1$ using 50 napkins and nothing else. How many sheets of paper would he need to add to a cardboard roll to create a makeshift cup with $\eta = 1$?

Answer: 125

Solution: Since 50 napkins are necessary to create a makeshift cup with $\eta = 1$, each napkin has $\eta = \frac{1}{50} = 0.02$. Then each paper would have $\eta = \frac{1}{10}$ of that of each napkin, or $\eta = 0.002$. To create a makeshift cup using a cardboard roll and sheets of paper, Justin would need the paper to have a cumulative η value of 1 - 0.75 = 0.25. Therefore, he would need $\frac{0.25}{0.002} = 125$ sheets of paper to create the makeshift cup.

3. $\triangle ABC$ has AB = 5, BC = 12, and AC = 13. A circle is inscribed in $\triangle ABC$, and \overline{MN} tangent to the circle is drawn such that M is on \overline{AC} , N is on \overline{BC} , and $\overline{MN} \parallel \overline{AB}$. The area of $\triangle MNC$ is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.

Answer: 43

Solution: Using the formula A = rs, where r denotes inradius, s denotes semiperimeter, and A denotes area, $r = \frac{A}{s} = \frac{30}{15} = 2$. Then, because the diameter of the incircle of $\triangle CAB$ incircle is 4, BN = 4 so CN = 8. Because $\triangle CMN \sim \triangle CAB$ by AA similarity, the ratio of their sides is $\frac{2}{3}$, so the area of $\triangle MNC$ is $\frac{4}{9}$ that of $\triangle ABC$. Then the area of $\triangle MNC$ is $\frac{4}{9} \left(\frac{1}{2} \cdot 5 \cdot 12\right) = \frac{40}{3}$, and our answer is 43.

4. In an 6×6 grid of lattice points, how many ways are there to choose 4 points that are vertices of a nondegenerate quadrilateral with at least one pair of opposite sides parallel to the sides of the grid?

Answer: 6525

Solution: First, we count the quadrilaterals with horizontal bases. There are $\binom{6}{2} = 15$ ways to choose the *y*-coordinates of the bases. Then, there are $\binom{6}{2}^2 = 225$ ways to choose the coordinates of the quadrilateral's vertices. Similarly, there are $15 \cdot 225$ ways to create quadrilaterals with vertical bases. However, we have counted the rectangles twice, so we must subtract $\binom{6}{2}^2 = 225$ rectangles. So there are a total of $15 \cdot 225 + 15 \cdot 225 - 225 = 29 \cdot 225 = 6525$ nondegenerate quadrilaterals that satisfy the given constraint.

5. The polynomial $f(x) = x^3 + rx^2 + sx + t$ has r, s, and t as its roots (with multiplicity), where f(1) is rational and $t \neq 0$. Compute |f(0)|.

Answer: 1

Solution: First, we have by Vieta's formulae that rst = -t. Since $t \neq 0$, rs = -1, so we write

$$s=-\frac{1}{r}.$$

Now we also observe (from Vieta's formulae) that r + s + t = -r, so $t = -2r - s = -2r + \frac{1}{r}$. Now we can write

$$f(x) = (x - r)(x - s)(x - t)$$

= $(x - r)\left(x + \frac{1}{r}\right)\left(x + 2r - \frac{1}{r}\right)$
= $x^3 + rx^2 - \left(2r^2 - 2 + \frac{1}{r^2}\right)x - 2r + \frac{1}{r}$
= $x^3 + rx^2 + sx + t$
= $x^3 + rx^2 - \frac{1}{r}x - 2r + \frac{1}{r}$.

Equating the coefficients of x in the third and fifth lines above yields $\frac{1}{r} = 2r^2 - 2 + \frac{1}{r^2}$, so $2r^4 - 2r^2 - r + 1 = 0$. We are given that

$$f(1) = r + s + t + 1 = -r + 1$$

is rational, so r must be rational. By the rational root theorem, the only possible values for r are ± 1 and $\pm \frac{1}{2}$. A simple check reveals that r = 1 is the only possibility, whence we find

$$f(x) = x^3 + x^2 - x - 1,$$

so |f(0)| = 1.