1. An exterior angle is the supplementary angle to an interior angle in a polygon. What is the sum of the exterior angles of a triangle and dodecagon (12-gon), in degrees?
Answer: 720
Solution: For any polygon, the sum of the exterior angles is 360°. The sum of the exterior angles of a triangle and dodecagon are each 360°, and $360^{\circ} \cdot 2=720{ }^{\circ}$.
2. Let $\eta \in[0,1]$ be a relative measure of material absorbence. η values for materials combined together are additive. η for a napkin is 10 times that of a sheet of paper, and a cardboard roll has $\eta=0.75$. Justin can create a makeshift cup with $\eta=1$ using 50 napkins and nothing else. How many sheets of paper would he need to add to a cardboard roll to create a makeshift cup with $\eta=1$?
Answer: 125
Solution: Since 50 napkins are necessary to create a makeshift cup with $\eta=1$, each napkin has $\eta=\frac{1}{50}=0.02$. Then each paper would have $\eta=\frac{1}{10}$ of that of each napkin, or $\eta=0.002$. To create a makeshift cup using a cardboard roll and sheets of paper, Justin would need the paper to have a cumulative η value of $1-0.75=0.25$. Therefore, he would need $\frac{0.25}{0.002}=125$ sheets of paper to create the makeshift cup.
3. $\triangle A B C$ has $A B=5, B C=12$, and $A C=13$. A circle is inscribed in $\triangle A B C$, and $\overline{M N}$ tangent to the circle is drawn such that M is on $\overline{A C}, N$ is on $\overline{B C}$, and $\overline{M N} \| \overline{A B}$. The area of $\triangle M N C$ is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

Answer: 43

Solution: Using the formula $A=r s$, where r denotes inradius, s denotes semiperimeter, and A denotes area, $r=\frac{A}{s}=\frac{30}{15}=2$. Then, because the diameter of the incircle of $\triangle C A B$ incircle is $4, B N=4$ so $C N=8$. Because $\triangle C M N \sim \triangle C A B$ by AA similarity, the ratio of their sides is $\frac{2}{3}$, so the area of $\triangle M N C$ is $\frac{4}{9}$ that of $\triangle A B C$. Then the area of $\triangle M N C$ is $\frac{4}{9}\left(\frac{1}{2} \cdot 5 \cdot 12\right)=\frac{40}{3}$, and our answer is 43 .
4. In an 6×6 grid of lattice points, how many ways are there to choose 4 points that are vertices of a nondegenerate quadrilateral with at least one pair of opposite sides parallel to the sides of the grid?
Answer: 6525
Solution: First, we count the quadrilaterals with horizontal bases. There are $\binom{6}{2}=15$ ways to choose the y-coordinates of the bases. Then, there are $\binom{6}{2}^{2}=225$ ways to choose the coordinates of the quadrilateral's vertices. Similarly, there are $15 \cdot 225$ ways to create quadrilaterals with vertical bases. However, we have counted the rectangles twice, so we must subtract $\binom{6}{2}^{2}=225$ rectangles. So there are a total of $15 \cdot 225+15 \cdot 225-225=29 \cdot 225=6525$ nondegenerate quadrilaterals that satisfy the given constraint.
5. The polynomial $f(x)=x^{3}+r x^{2}+s x+t$ has r, s, and t as its roots (with multiplicity), where $f(1)$ is rational and $t \neq 0$. Compute $|f(0)|$.

Answer: 1

Solution: First, we have by Vieta's formulae that $r s t=-t$. Since $t \neq 0, r s=-1$, so we write

$$
s=-\frac{1}{r} .
$$

Now we also observe (from Vieta's formulae) that $r+s+t=-r$, so $t=-2 r-s=-2 r+\frac{1}{r}$. Now we can write

$$
\begin{aligned}
f(x) & =(x-r)(x-s)(x-t) \\
& =(x-r)\left(x+\frac{1}{r}\right)\left(x+2 r-\frac{1}{r}\right) \\
& =x^{3}+r x^{2}-\left(2 r^{2}-2+\frac{1}{r^{2}}\right) x-2 r+\frac{1}{r} \\
& =x^{3}+r x^{2}+s x+t \\
& =x^{3}+r x^{2}-\frac{1}{r} x-2 r+\frac{1}{r}
\end{aligned}
$$

Equating the coefficients of x in the third and fifth lines above yields $\frac{1}{r}=2 r^{2}-2+\frac{1}{r^{2}}$, so $2 r^{4}-2 r^{2}-r+1=0$. We are given that

$$
f(1)=r+s+t+1=-r+1
$$

is rational, so r must be rational. By the rational root theorem, the only possible values for r are ± 1 and $\pm \frac{1}{2}$. A simple check reveals that $r=1$ is the only possibility, whence we find

$$
f(x)=x^{3}+x^{2}-x-1
$$

so $|f(0)|=1$.

