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1. How many permutations of the set {B,M, T, 2, 0} do not have B as their first element?

Answer: 96

Solution: We have four options for the first letter (the letters other than B), then four options
for the second letter, three options for the third, two options for the fourth, and one option for
the fifth. Per the multiplication rule, we have 4× 4× 3× 2× 1 = 96 such permutations.
Alternatively, there are 5! = 120 total permutations of the given set, and one-fifth of them have
B as the first element. The answer is then 120 · 45 = 96 .

2. Haydn picks two different integers between 1 and 100, inclusive, uniformly at random. The
probability that their product is divisible by 4 can be expressed in the form m

n , where m and n
are relatively prime positive integers. Compute m+ n.

Answer: 3

Solution: If the first integer is congruent to 1 or 3 (mod 4), then the second must be a
multiple of 4. This case occurs with probability 1

2 ·
25
99 = 25

198 . If the first integer is congruent
to 2 (mod 4), the only requirement for the second integer is that it be even, which occurs with
probability 1

4 ·
49
99 = 49

396 . Finally, if the first integer is a multiple of 4, the product is guaranteed
to be a multiple of 4 (probability 1

4 of this case happening). Hence, the total probability is
25
198 + 49

396 + 1
4 = 1

2 , and our answer is 3 .

3. Compute the remainder when 98! is divided by 101.

Answer: 50

Solution: Let the remainder be 0 ≤ x ≤ 100. By Wilson’s Theorem, 100! ≡ −1 (mod 101), so
100 · 99 · 98! ≡ 100 · 99 ·x ≡ −1 (mod 101). Since 100 ≡ −1 (mod 101) and 99 ≡ −2 (mod 101),
it remains to solve for x such that 2x ≡ −1 ≡ 100 (mod 101) which gives 50 .

4. Three lights are placed horizontally on a line on the ceiling. All the lights are initially off. Every
second, Neil picks one of the three lights uniformly at random to switch: if it is off, he switches
it on; if it is on, he switches it off. When a light is switched, any lights directly to the left or
right of that light also get turned on (if they were off) or off (if they were on). The expected
number of lights that are on after Neil has flipped switches three times can be expressed in the
form m

n , where m and n are relatively prime positive integers. Compute m+ n.

Answer: 82

Solution: By symmetry, the probability that the rightmost light is on is the same as the
probability that the leftmost light is on. The leftmost light changes state if either it or the
middle light is switched, which happens with probability 2

3 . The probability that it is on after

three seconds is then
(
2
3

)3
+ 3 · 23 ·

(
1
3

)2
= 14

27 . Further, the middle light changes state no matter
what. Now the expected number of lights on after three seconds, by linearity of expectation, is
14
27 + 1 + 14

27 = 55
27 and our answer is 82 as desired.

5. Let P be the probability that the product of 2020 real numbers chosen independently and
uniformly at random from the interval [−1, 2] is positive. The value of 2P − 1 can be written
in the form (mn )b, where m,n and b are positive integers such that m and n are relatively prime
and b is as large as possible. Compute m+ n+ b.

Answer: 2024
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Solution 1: We require that an even number of real numbers are negative (or equivalently,
positive), which occurs with probability

1

32020
+

(
2020

2

)
22

32020
+ · · ·+

(
2020

2020

)
22020

32020
.

Observe that the binomial expansion of (
1

3
+

2

3

)2020

contains this sum; by symmetry, adding (
1

3
− 2

3

)2020

produces twice the desired sum. Simplifying, we get that P = 1
2 + 1

2·32020 , so 2P − 1 = 1
32020

, and

our answer is 2024 .

Solution 2: Let Pn be the product after selecting n numbers, and let pn be the probability
that Pn is positive. There are two cases when Pn > 0: either Pn−1 > 0 and the nth number is
positive, or Pn−1 < 0 and the nth number is negative. This gives

pn =
2

3
· pn−1 +

1

3
· (1− pn−1) =

1

3
· pn−1 +

1

3
=⇒ 2pn − 1 =

2

3
· pn−1 −

1

3
=

1

3
(2pn−1 − 1).

Noting that P0 = 1 means that 2p0 − 1 = 1, we get 2p2020 − 1 = 1
32020

, and our answer is 2024 .

6. Let N be the number of non-empty subsets T of S = {1, 2, 3, 4, . . . , 2020} satisfying max(T ) >
1000. Compute the largest integer k such that 3k divides N .

Answer: 2

Solution: There are 22020 subsets of S, and 21000 subsets of S′ = {1, 2, · · · , 1000}. The subsets
of S′ are precisely the subsets of S that don’t have max(T ) > 1000, so we have

N = 22020 − 21000 = 21000(21020 − 1).

Now by Euler’s theorem (noting that ϕ(27) = 18),

218 ≡ 1 (mod 27) =⇒ 21008 ≡ 1 (mod 27) =⇒ 21020 ≡ 4096 ≡ 19 (mod 27).

It follows that 21020 − 1 ≡ 18 (mod 27), so k = 2 .

7. Compute the number of ordered triples of positive integers (a, b, c) such that a + b + c + ab +
bc+ ac = abc+ 1.

Answer: 15

Solution: Without loss of generality, let a ≤ b ≤ c. We have

a+ b+ c = abc− ab− bc− ca+ 1

upon subtracting ab+ bc+ ca from both sides. We then have

2a+ 2b+ 2c = abc− ab− bc− ca+ a+ b+ c+ 1
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upon adding a+ b+ c to both sides, from which it follows that

2a+ 2b+ 2c− 2 = abc− ab− bc− ca+ a+ b+ c− 1 = (a− 1)(b− 1)(c− 1)

Then recognize that the LHS is equal to

2(a+ b+ c)− 2 = 2((a− 1) + (b− 1) + (c− 1) + 2)

thereby equpping us to make the substitutions

r = a− 1, s = b− 1, t = c− 1⇒ rst = 2(r + s+ t+ 2) (1)

Note that c = 1 gives no solution to the original equation, so we know that t ≥ 1. From here,
we observe that

t3 ≥ rst ≥ 2(1 + 1 + 1 + 2) = 10⇒ t ≥ 3 (2)

and also that

rst ≤ 2(3t+ 2)⇒ r2 ≤ rs ≤ 6 +
4

t
≤ 7⇒ r < 3⇒ r = {1, 2} (3)

If r = 1, then

st = 2(s+ t+ 3)⇒ (s− 2)(t− 2) = 10⇒ (s, t) ∈ {(3, 12), (4, 7)}.

If r = 2, then
2st = 2(s+ t+ 4)⇒ (s− 1)(t− 1) = 5⇒ (s, t) = (2, 6).

Therefore, (r, s, t) ∈ {(1, 3, 12), (1, 4, 7), (2, 2, 6)}. This implies that

(a, b, c) ∈ {(2, 4, 13), (2, 5, 8), (3, 3, 7)}.

Since there are 3 ordered triples (a, b, c), 2 with 6 permutations and the other with 3 permuta-
tions, there are 15 tuples in total.

8. Dexter is running a pyramid scheme. In Dexter’s scheme, he hires ambassadors for his company,
Lie Ultimate. Any ambassador for his company can recruit up to two more ambassadors (who
are not already ambassadors), who can in turn recruit up to two more ambassadors each, and so
on (Dexter is a special ambassador that can recruit as many ambassadors as he would like). An
ambassador’s downline consists of the people they recruited directly as well as the downlines of
those people. An ambassador earns executive status if they recruit two new people and each of
those people has at least 70 people in their downline (Dexter is not considered an executive). If
there are 2020 ambassadors (including Dexter) at Lie Ultimate, what is the maximum number
of ambassadors with executive status?

Answer: 27

Solution: Note that we can draw the organization of Dexter’s company as a tree, and each
person that Dexter recruits is the root of a binary subtree (i.e. a subtree that is binary). We
will prove a result about the individual subtrees.
Let e be the number of ambassadors with executive status (in a given subtree). We will prove
a general result. Let a be the number of ambassadors (in a binary subtree), and c the cutoff for
the downline size of each of someone’s recruits in order for that someone to become an executive
(standing in for 70 in this case). We claim that

e(c+ 2) + c+ 1 ≤ a
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(again, in each subtree) when e > 0. We prove this claim by induction on e. If e = 1, then there
is precisely one executive, and they must have recruited two people, each of whom has at least
c people in their downline. Then we find that

a ≥ 1 + 1 + 1 + c+ c = 1(c+ 2) + c+ 1

so our desired inequality holds. For our inductive step, suppose we have e executives, where
e > 1, and suppose that the desired result holds for all smaller values of e. The number of
executives is finite, so there is some executive that recruited two non-executives. Consider the
binary tree that results from removing this person as well as one of their subtrees (i.e. this
person, one of their recruits, and that recruit’s entire downline) and viewing their other subtree
(their other recruit) as a recruit of the person who recruited them. We have removed at least
1 + 1 + c = c+ 2 people from the organization with this transformation, and we are left with a
tree that has one fewer executive. By the inductive hypothesis, we have

(e− 1)(c+ 2) + c+ 1 ≤ a− (c+ 2)

and adding c+ 2 to both sides gives

e(c+ 2) + c+ 1 ≤ a

which completes the inductive step, and hence the proof.
Now we can use this result to bound the number of executives at Lie Ultimate. Supposing that
we have k subtrees in the overall organization, we can write

72ei + 71 ≤ ai

where ei and ai are the number of executives and the number of ambassadors in the ith subtree
for i = 1, 2, · · · , k. Summing over all i, we find

72e+ 71k ≤ 2019

where e is the number of executives at Lie Ultimate (we use 2019 because we ignore Dexter).
Evidently, minimizing k will maximize e, so we take k = 1 to find that

72e ≤ 1948 =⇒ e ≤ 27

Now the question becomes: is 27 executives attainable? We can draw a 27-node heap and then
add two children, each with 70 children of their own, below each leaf, of which there are 14.
This creates a tree with

1 + 27 + 14 · 2 · 71 = 2016

nodes, which is less than 2020. Thus, 27 executives is attainable and the best that we can do.

9. For any point (x, y) with 0 ≤ x < 1 and 0 ≤ y < 1, Jenny can perform a shuffle on that point,
which takes the point to ({3x+ y}, {x+ 2y}) where {α} denotes the fractional or decimal part
of α (so for example, {π} = π − 3 = 0.1415...). How many points p are there such that after 3
shuffles on p, p ends up in its original position?

Answer: 76

Let a be an integer. Noticing that {ax} = {a{x}} and {x+ y} = {{x}+ {y}}, we see that after
three shuffles, Jenny takes point (x, y) to point

({35x+ 20y}, {20x+ 15y}).
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We want this to equal to the original point (x, y), or we want

(35x+ 20y, 20x+ 15y)− (x, y) = (34x+ 20y, 20x+ 14y)

to be a lattice point. Looking at what that transformation modulo 1 above does to the entire
square [0, 1) × [0, 1), we want to find all points in the square whose transformations are lattice
points. We see that the number of desired points we wish to count is equal to the number of
lattice points in the (“half-open”) parallelogram generated by the transformation above. Let b
be the number of boundary points and i be the number of interior points in the parallelogram.
There are only b−4

2 noncorner boundary lattice points we want to count (since (x, 1) and (1, x)
are technically not part of the square [0, 1) × [0, 1)) plus the one corner point, the origin, that
we want to count. We want to count all the interior points, so the total number of lattice points
we want to count is

i+
b− 4

2
+ 1 = i+

b

2
− 1,

which by Pick’s theorem is precisely the area of the parallelogram. By the determinant formula
for the area of a parallelogram, we get 34× 14− 20× 20 = 76 . (It’s also possible to count the

lattice points manually and get 76 , without the use of Pick’s Theorem.)

10. Let ψ(n) be the number of integers 0 ≤ r < n such that there exists an integer x that satisfies
x2 + x ≡ r (mod n). Find the sum of all distinct prime factors of

4∑
i=0

4∑
j=0

ψ(3i5j).

Answer: 54

Solution: By the Fundamental Theorem of Arithmetic, we can find a unique prime factorization
of

n =
∏
i

pαii ,

where k is non-negative, pi’s are odd primes, and αi’s are positive. Then we know

x2 + x ≡ r (mod n)⇐⇒ (2x+ 1)2 ≡ 4r + 1 (mod 4n)

Hence, ψ(n) is the number of odd residues modulo

4n = 22
∏
i

pαii

between 0 and 4n− 1, inclusive. Here, we call a a residue modulo p if there exists an integer
x such that

x2 ≡ a (mod p).

Denote the number of residues modulo n between 0 and n− 1, inclusive, as ξ(n).

Claim 1. a is a residue modulo n =
∏
i p
αi
i , where pi’s are primes and αi’s are positive numbers,

if and only if a is a residue modulo pαii for all i.

Proof of Claim 1. If a is a residue modulo

n =
∏
i

pαii ,
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then there exists an integer x, such that

x2 ≡ a (mod
∏
i

pαii ).

For all i, since

pαii |
∏
i

pαii ,

we have
x2 ≡ a (mod pαii )

and a is a residue modulo pαii .

If a is a residue modulo pαii for all i, we can find, for any i, an xi that satisfies

x2i ≡ a (mod pαii ).

By the Chinese Remainder Theorem, there is a solution

x ≡ x′ (mod
∏
i

pαii )

to the system of modulo congruences:

∀i, x ≡ xi (mod pαii ).

We know for all i,
(x′)2 ≡ x2i ≡ a (mod pαii ).

Then
(x′)2 ≡ a (mod

∏
i

pi
αi)

and a is a residue modulo
∏
i pi

αi .

Back to the original problem. From the proof above, we see

ψ(n) = ψ(4) ·
∏
i

ξ(pαii ) =
∏
i

ξ(pαii ).

Now, we compute ξ(pαii ).

Claim 2. ξ(pi) = pi+1
2 .

Proof of Claim 2. Since pi is an odd prime, we know there is a primitive root g modulo pi. By
definition,

{g, g2, . . . , gpi−1 = 1} = Z∗pi .

Intuitively, g2k = (gk)2 are residues modulo pi for integer k = 1, . . . , pi−12 . Including zero yields

ξ(pi) ≥ pi+1
2 .

Now, we prove ξ(pi) ≤ pi+1
2 . Given a nonzero residue a modulo pi, it must have at least two

square roots, as x2 ≡ a (mod pi) yields (−x)2 ≡ a (mod pi). Since we only have pi−1 candidates
for square root, we know ξ(pi) ≤ pi−1

2 + 1 = pi+1
2 . Hence ξ(pi) = pi+1

2 .

Back to the original problem. To compute ξ(pαii ), we prove two lemmas:
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Lemma 1 (Hensel’s Lemma). Given gcd(a, pi) = 1, a is a residue modulo pαii if a is a residue
modulo pi.

Proof of Lemma 1. We prove this by induction about αi.

When αi = 1, this statement is obviously true.

Assume this statement holds when αi = k. Then there exists an integer x0 such that x20 ≡ a
(mod pki ). Let x20 ≡ m · pki + a (mod pk+1

i ). Since pi is an odd prime, there exists an l such that
2x0l +m ≡ 0 (mod pi). This implies

2x0l · pki +m · pki ≡ 0 (mod pk+1
i ),

and thus

(x0 + l · pki )2 ≡ x20 + 2x0l · pki + l2 · p2ki ≡ m · pki + a+ 2x0l · pki ≡ a (mod pk+1
i )

Therefore, a is a residue modulo pk+1
i , and the statement holds.

Lemma 2. a = pmi a0, where m < αi and pi - a0, is a residue modulo pαii if and only if m is even
and a0 is a residue modulo pi.

Proof of Lemma 2. We first prove the “if” direction. By Lemma 1, we know a is a residue
modulo pαii : there exists an x such that x2 ≡ a0 (mod pαii ). Since

(p
m
2
i x)2 ≡ pmi a0 ≡ a (mod pαii ),

we know a is a residue modulo pαii .

Now, we prove the “only if” direction. We know there exists an x such that x2 ≡ pmi a0 (mod pαii ).
Since pmi | a and pm+1

i - a, m must be even. Thus(
x

p
m
2
i

)2

≡ a0 (mod pαi−mi )

and a0 is a residue modulo pαi−mi . Applying Lemma 1, we know a0 is a residue modulo pi.

Back to the original problem. For a given m = 2k, 1 ≤ a0 ≤ pαi−2ki − 1 is coprime with pi. Each
l · p + 1 ≤ a0 ≤ (l + 1) · p − 1 segments yields, by Lemma 2 and Claim 2, pi−1

2 residues. There

are pαi−2k−1i such segments, hence m = 2k gives pi−1
2 pαi−2k−1i residues modular pαii . Summing

up all k’s and adding 0 as a residue yields

ξ(pαii ) = 1 +

bαi−1

2
c∑

k=0

pi − 1

2
pαi−2k−1i

= 1 +
pi − 1

2
pαi−1i

1− p−2·b
αi+1

2
c

i

1− p−2i

= 1 +
pα1+1
i (1− p−2·b

αi+1

2
c

i )

2(pi + 1)

=

 1 +
p
αi+1
i −1
2(pi+1) αi = 2l − 1, l ∈ N∗

1 +
p
αi+1
i −pi
2(pi+1) αi = 2l, l ∈ N∗
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Now, with a generic formula, we can rewrite the equation:

4∑
i=0

4∑
j=0

ψ(3i5j) =

4∑
i=0

4∑
j=0

ξ(3i) · ξ(5j)

=
4∑
i=0

ξ(3i) ·
4∑
j=0

ξ(5j)

= (1 + 2 + 4 + 11 + 31) · (1 + 3 + 11 + 53 + 261)

= 73 · 47.

Therefore, our desired result is 7 + 47 = 54 .


