1. A particle starts moving from $(20,0)$ along the line $x=20$ at a speed of 1 unit per second in the positive y direction. Let $f(t)$ be the distance of the particle from the origin at time t-therefore, $f(20)=20 \sqrt{2}$. Then $f^{\prime}(20)$ can be written in the form $\frac{p \sqrt{q}}{r}$, where p, q, and r are positive integers such that p and r are relatively prime and that q is square-free. Compute $p+q+r$.
Answer: 5
Solution: $f(t)=\sqrt{t^{2}+400}$. Therefore, $f^{\prime}(t)=\frac{t}{\sqrt{t^{2}+400}}$. Therefore, $f^{\prime}(20)=\frac{20}{\sqrt{800}}=\frac{\sqrt{2}}{2}$ and our answer is 5 .
2. For all real numbers x, let $f(x)=\left|x^{2}+x\right|$. Let $I_{1}=\int_{-2020}^{0} f(x) \mathrm{d} x$, and let $I_{2}=\int_{0}^{2019} f(x) \mathrm{d} x$. Then $\left|I_{1}-I_{2}\right|$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
Answer: 7
Solution: Observe that

- For $x \leq-1, f(-x-1)=\left|(-x-1)^{2}+(-x-1)\right|=x^{2}+x$.
- For $-1 \leq x \leq 0, f(x)=-\left(x^{2}+x\right)$.
- For $x \geq 0, f(x)=x^{2}+x$.

Thus we can write

$$
\begin{aligned}
I_{1} & =\int_{-2020}^{-1}\left(x^{2}+x\right) \mathrm{d} x+\int_{-1}^{0}-\left(x^{2}+x\right) \mathrm{d} x \\
& =\int_{0}^{2019}\left(x^{2}+x\right) \mathrm{d} x+\frac{1}{6} \\
& =I_{2}+\frac{1}{6} \\
I_{1}-I_{2} & =\frac{1}{6} .
\end{aligned}
$$

Our answer, therefore, is 7 .
3. The integral

$$
\int_{3}^{4} \arcsin \left(\frac{\sqrt{x}}{2}\right) \mathrm{d} x
$$

can be written in the form $\frac{m \pi}{n}-\frac{p \sqrt{q}}{r}$, where m and n are relatively prime positive integers, p and r are relatively prime positive integers, and q is a square-free positive integer. Compute $m+n+p+q+r$.
Answer: 11
Solution: Refer to the diagram for labeling. First define $f(x)=\arcsin \left(\frac{\sqrt{x}}{2}\right)$, then by simple algebra $f^{-1}(x)=4 \sin ^{2}(x)$. Then the integral, which equals to the area of A in the diagram, is also equal to the area of B (by simple reflection over the line $y=x$). Note that the green curve is $f(x)$ and the blue curve is $f^{-1}(x)$. Then B is the region we want the area of, C is the

rectangle $\left[0, \frac{\pi}{3}\right] \times[0,3], D$ is the region under the curve $y=f^{-1}(x)$ in the interval $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$, and $B \cup C \cup D$ is the rectangle $\left[0, \frac{\pi}{2}\right] \times[0,4]$. Then

$$
\begin{aligned}
|B| & =|B \cup C \cup D|-|C|-|D| \\
& =\left(4 \cdot \frac{\pi}{2}\right)-\left(\frac{\pi}{3} \cdot 3\right)-\left(\int_{\pi / 3}^{\pi / 2} 4 \sin ^{2}(x) \mathrm{d} x\right) \\
& =2 \pi-\pi-\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right) \\
& =\frac{2 \pi}{3}-\frac{\sqrt{3}}{2},
\end{aligned}
$$

where the integral is computed by a standard integration by parts, or other trigonometric identities. Therefore, our answer is 11 .

