1. A particle starts moving from (20, 0) along the line x = 20 at a speed of 1 unit per second in the positive y direction. Let f(t) be the distance of the particle from the origin at time t - therefore,  $f(20) = 20\sqrt{2}$ . Then f'(20) can be written in the form  $\frac{p\sqrt{q}}{r}$ , where p, q, and r are positive integers such that p and r are relatively prime and that q is square-free. Compute p + q + r.

## Answer: 5

**Solution:**  $f(t) = \sqrt{t^2 + 400}$ . Therefore,  $f'(t) = \frac{t}{\sqrt{t^2 + 400}}$ . Therefore,  $f'(20) = \frac{20}{\sqrt{800}} = \frac{\sqrt{2}}{2}$  and our answer is 5.

2. For all real numbers x, let  $f(x) = |x^2 + x|$ . Let  $I_1 = \int_{-2020}^{0} f(x) dx$ , and let  $I_2 = \int_{0}^{2019} f(x) dx$ . Then  $|I_1 - I_2|$  can be written in the form  $\frac{m}{n}$ , where m and n are relatively prime positive integers. Compute m + n.

## Answer: 7

Solution: Observe that

- For  $x \le -1$ ,  $f(-x-1) = \left| (-x-1)^2 + (-x-1) \right| = x^2 + x$ .
- For  $-1 \le x \le 0$ ,  $f(x) = -(x^2 + x)$ .

 $I_1$ 

• For  $x \ge 0$ ,  $f(x) = x^2 + x$ .

Thus we can write

$$I_{1} = \int_{-2020}^{-1} (x^{2} + x) dx + \int_{-1}^{0} - (x^{2} + x) dx$$
$$= \int_{0}^{2019} (x^{2} + x) dx + \frac{1}{6}$$
$$= I_{2} + \frac{1}{6}$$
$$- I_{2} = \frac{1}{6}.$$

Our answer, therefore, is 7.

3. The integral

$$\int_3^4 \arcsin\left(\frac{\sqrt{x}}{2}\right) \mathrm{d}x$$

can be written in the form  $\frac{m\pi}{n} - \frac{p\sqrt{q}}{r}$ , where *m* and *n* are relatively prime positive integers, *p* and *r* are relatively prime positive integers, and *q* is a square-free positive integer. Compute m + n + p + q + r.

## Answer: 11

**Solution:** Refer to the diagram for labeling. First define  $f(x) = \arcsin\left(\frac{\sqrt{x}}{2}\right)$ , then by simple algebra  $f^{-1}(x) = 4\sin^2(x)$ . Then the integral, which equals to the area of A in the diagram, is also equal to the area of B (by simple reflection over the line y = x). Note that the green curve is f(x) and the blue curve is  $f^{-1}(x)$ . Then B is the region we want the area of, C is the



rectangle  $[0, \frac{\pi}{3}] \times [0, 3]$ , D is the region under the curve  $y = f^{-1}(x)$  in the interval  $[\frac{\pi}{3}, \frac{\pi}{2}]$ , and  $B \cup C \cup D$  is the rectangle  $[0, \frac{\pi}{2}] \times [0, 4]$ . Then

$$|B| = |B \cup C \cup D| - |C| - |D|$$
  
=  $\left(4 \cdot \frac{\pi}{2}\right) - \left(\frac{\pi}{3} \cdot 3\right) - \left(\int_{\pi/3}^{\pi/2} 4\sin^2(x) \, \mathrm{d}x\right)$   
=  $2\pi - \pi - \left(\frac{\pi}{3} + \frac{\sqrt{3}}{2}\right)$   
=  $\frac{2\pi}{3} - \frac{\sqrt{3}}{2},$ 

where the integral is computed by a standard integration by parts, or other trigonometric identities. Therefore, our answer is  $\boxed{11}$ .