1. Let

$$
f(x)=\frac{x^{2020}}{2020}+2020!
$$

Compute $f^{\prime \prime}(1)$.
Answer: 2019
Solution: Since $f^{\prime}(x)=x^{2019}, f^{\prime \prime}(x)=2019 x^{2018}$; therefore, $f^{\prime \prime}(1)=2019$.
2. Compute the integral

$$
\int_{-20}^{20}(20-|x|) \mathrm{d} x .
$$

Answer: 400
Solution: We have

$$
\begin{aligned}
\int_{-20}^{20}(20-|x|) \mathrm{d} x & =2 \int_{0}^{20}(20-x) \mathrm{d} x \\
& =2 \int_{0}^{20} x \mathrm{~d} x \\
& =\left[x^{2}\right]_{0}^{20} \\
& =400
\end{aligned}
$$

3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function defined by

$$
f(x)=f^{\prime}(2) x^{2}+x .
$$

Then $f(2)$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
Answer: 5
Solution: Taking the derivative on both sides gives us

$$
\begin{aligned}
f^{\prime}(x) & =2 f^{\prime}(2) x+1 \\
f^{\prime}(2) & =2 f^{\prime}(2) \cdot 2+1 \\
3 f^{\prime}(2) & =-1 \\
f^{\prime}(2) & =-\frac{1}{3} \\
f(2) & =4 f^{\prime}(2)+2 \\
& =-\frac{4}{3}+2 \\
& =\frac{2}{3}
\end{aligned}
$$

and our answer is 5 .
4. If a is a positive real number such that the region of finite area bounded by the curve $y=$ $x^{2}+2020$, the line tangent to that curve at $x=a$, and the y-axis has area 2020, compute a^{3}.
Answer: 6060

Solution: Taking the derivative of $f(x)=x^{2}+2020$, we have $f^{\prime}(x)=2 x$, so $f^{\prime}(a)=2 a$. Then the tangent line at $x=a$ to $f(x)$ has slope $2 a$. Let the tangent line be $g(x)=2 a x+c$, then we must have $f(a)=g(a)$, giving $2 a^{2}+c=a^{2}+2020$, so $c=2020-a^{2}$. Then the tangent line has equation $y=2 a x-a^{2}+2020$, so the area of that region is

$$
\begin{aligned}
2020 & =\int_{0}^{a}\left(x^{2}-2 a x+a^{2}\right) \mathrm{d} x \\
& =\int_{0}^{a}(x-a)^{2} \mathrm{~d} x \\
& =\frac{a^{3}}{3} \\
a^{3} & =6060 .
\end{aligned}
$$

5. Suppose that a parallelogram has a vertex at the origin of the 2-dimensional plane, and two of its sides are vectors from the origin to the points $(10, y)$, and $(x, 10)$, where $x, y \in[0,10]$ are chosen uniformly at random. The probability that the parallelogram's area is at least 50 is $\ln (\sqrt{a})+\frac{b}{c}$, where a, b, and c are positive integers such that b and c are relatively prime and a is as small as possible. Compute $a+b+c$.

Answer: 5

Solution: The parallelogram's area is given by the determinant of the matrix $\left[\begin{array}{cc}10 & y \\ x & 10\end{array}\right]$ which is equal to $100-x y$. It thus suffices to find the probability that $x y \leq 50$ given $x, y \in[0,10]$. This simplifies to $y \leq \frac{50}{x}$. Then if $x y \leq 50$ then either $x<5$, with probability $\frac{1}{2}$ by symmetry, or $x y>50$ given $x \geq 5$, and this probability is $\frac{1}{100} \int_{5}^{10} \frac{50}{x} \mathrm{~d} x$ (we divide by 100 to normalize the probability, since the integral computes the area). This integral evaluates to $\frac{1}{100}(50 \ln (2))=$ $\frac{\ln (2)}{2}$, so the total probability is $\frac{1}{2}+\frac{\ln (2)}{2}=\frac{1+\ln (2)}{2}$, and therefore our answer is 5 .
6. For some $a>1$, the curves $y=a^{x}$ and $y=\log _{a}(x)$ are tangent to each other at exactly one point. Compute $|\ln (\ln (a))|$.
Answer: 1
Solution: Since the functions a^{x} and $\log _{a}(x)$ are inverses, by symmetry their point of tangency occurs on the line $y=x$. Let the intersection point be (z, z); at this point, again by symmetry, $a^{z}=\log _{a}(z)$, and

$$
\frac{\mathrm{d}}{\mathrm{~d} z} a^{z}=a^{z} \ln (a)=\frac{\mathrm{d}}{\mathrm{~d} z} \log _{a}(z)=\frac{1}{z \ln (a)}=1 .
$$

Substituting $a^{z}=\log _{a}(z)$ into $a^{z} \ln (a)=1$, we obtain $\ln (a) \log _{a}(z)=1$, so $\ln (z)=1$, so $z=$ e. Substituting $z=\mathrm{e}$ back into the equation $\frac{1}{z \ln (a)}=1$, we have $\frac{1}{\mathrm{e} \ln (a)}=1$, so $a=\mathrm{e}^{1 / \mathrm{e}}$ and $|\ln (\ln (a))|=1$ as desired.
7. The limit

$$
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1 / n} x^{x+1} \mathrm{~d} x
$$

can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.
Answer: 3

Solution: Let $h=\frac{1}{n}$, so

$$
\begin{align*}
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{1 / n} x^{x+1} \mathrm{~d} x & =\lim _{h \rightarrow 0^{+}} \frac{\int_{0}^{h} x^{x+1} \mathrm{~d} x}{h^{2}} \\
& =\lim _{h \rightarrow 0^{+}} \frac{\frac{\mathrm{d}}{\mathrm{~d} h} \int_{0}^{h} x^{x+1} \mathrm{~d} x}{\frac{\mathrm{~d}}{\mathrm{~d} h} h^{2}} \\
& =\lim _{h \rightarrow 0^{+}} \frac{h^{h+1}-0^{1}}{2 h} \\
& =\frac{1}{2} \lim _{h \rightarrow 0^{+}} h^{h} \\
& =\frac{1}{2} \exp \left(\lim _{h \rightarrow 0^{+}} \ln \left(h^{h}\right)\right) \\
& =\frac{1}{2} \exp \left(\lim _{h \rightarrow 0^{+}} h \ln (h)\right) \\
& =\frac{1}{2} \exp \left(\lim _{h \rightarrow 0^{+}} \frac{\ln (h)}{1 / h}\right) \\
& =\frac{1}{2} \exp \left(\lim _{h \rightarrow 0^{+}} \frac{\frac{\mathrm{d}}{\mathrm{~d} h} \ln (h)}{\frac{\mathrm{d}}{\mathrm{~d} h} \frac{1}{h}}\right) \\
& =\frac{1}{2} \exp \left(\lim _{h \rightarrow 0^{+}} \frac{1 / h}{-1 / h^{2}}\right) \\
& =\frac{1}{2} \exp \left(\lim _{h \rightarrow 0^{+}}-h\right) \\
& =\frac{1}{2} \exp (0) \\
& =\frac{1}{2},
\end{align*}
$$

and our answer is 3 . Here, the statements marked with (\dagger) are derived using L'Hopital's rule, and the rest is algebraic manipulation.
8. The summation

$$
\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \frac{1}{a^{2} b+2 a b+a b^{2}}
$$

can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.

Answer: 11

Solution: We have

$$
\begin{aligned}
& \frac{1}{a^{2} b+2 a b+a b^{2}}=\frac{1}{a b(a+b+2)} \\
&=\frac{1}{a b} \int_{0}^{1} x^{a+b+1} \mathrm{~d} x \\
& \sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \frac{1}{a^{2} b+2 a b+a b^{2}}=\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \frac{1}{a b} \int_{0}^{1} x^{a+b+1} \mathrm{~d} x \\
&=\int_{0}^{1} x\left(\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \frac{x^{a+b}}{a b}\right) \mathrm{d} x \quad \text { (Interchange integral and summation.) } \\
&=\int_{0}^{1} x\left(\sum_{a=1}^{\infty} \frac{x^{a}}{a}\right)\left(\sum_{b=1}^{\infty} \frac{x^{b}}{b}\right) \mathrm{d} x \\
&=\int_{0}^{1} x\left(\sum_{a=1}^{\infty} \frac{x^{a}}{a}\right)^{2} \mathrm{~d} x \\
&=\int_{0}^{1} x \ln (1-x)^{2} \mathrm{~d} x \\
&=\int_{0}^{1}(1-x) \ln (x)^{2} \mathrm{~d} x \\
&=\frac{7}{4} . \\
&\text { (Taylor series of } \ln (1-x) .) \\
&\text { (Use the transformation } x \rightarrow 1-x .) \\
& \text { (Using integration by parts.) }
\end{aligned}
$$

And so our answer is 11 .
9. Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ (where $\mathbb{R}_{>0}$ is the set of all positive real numbers) be differentiable and satisfy the equation

$$
f(y)-f(x)=\frac{x^{x}}{y^{y}} f\left(\frac{y^{y}}{x^{x}}\right)
$$

for all real $x, y>0$. Furthermore, $f^{\prime}(1)=1$. Compute $\frac{f\left(2020^{2}\right)}{f(2020)}$.
Answer: 4040

Solution: Set $x=y=1$; we obtain $f(1)=0$. Applying the definition of a derivative,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x^{x}}{(x+h)^{x+h}} f\left(\frac{(x+h)^{x+h}}{x^{x}}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(\frac{(x+h)^{x+h}}{x^{x}}\right)}{h} \quad \quad\left(\text { Since } \lim _{h \rightarrow 0} \frac{x^{x}}{(x+h)^{x+h}}=1 .\right) \\
& \left.=\lim _{h \rightarrow 0} \frac{f\left(\frac{(x+h)^{x+h}}{x^{x}}\right)-f(1)}{h} \quad \quad \quad \text { (Since } f(1)=0 .\right) \text {) } \\
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f\left(\frac{(x+h)^{x+h}}{x^{x}}\right)-f(1)}{\frac{(x+h)^{x+h}}{x^{x}}-1} \\
& =1 \\
\lim _{h \rightarrow 0}\left(\frac{(x+h)^{x+h}}{x^{x}}-1\right) & =\lim _{h \rightarrow 0}\left(f\left(\frac{(x+h)^{x+h}}{x^{x}}\right)-f(1)\right) \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{(x+h)^{x+h}}{x^{x}}-1}{h}
\end{aligned}
$$

This limit is nontrivial, but possible to evaluate.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{(x+h)^{x+h}}{x^{x}}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{-x}(x+h)^{x+h}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\mathrm{~d}}{\mathrm{~d} h}\left[x^{-x}(x+h)^{x+h}-1\right]}{\frac{\mathrm{d}}{\mathrm{~d} h} h} \\
& =\lim _{h \rightarrow 0} \frac{x^{-x}(x+h)^{x+h}(\ln (x+h)+1)}{1} \\
& =\lim _{h \rightarrow 0} x^{-x}(x+h)^{x+h}(\ln (x+h)+1) \\
& =x^{-x}(x+0)^{x+0}(\ln (x+0)+1) \\
& =\ln (x)+1
\end{aligned}
$$

Now that we obtain $f^{\prime}(x)=\ln (x)+1$, we integrate to find $f(x)$:

$$
\begin{aligned}
\int(\ln (x)+1) \mathrm{d} x & =\int \ln (x) \mathrm{d} x+\int \mathrm{d} x \\
& =x \ln (x)-\int \mathrm{d} x+\int \mathrm{d} x \\
& =x \ln (x)+C
\end{aligned}
$$

where C is some constant and $\int \ln (x) \mathrm{d} x$ is evaluated by integration parts, where $u=\log (x)$ (so $\left.\mathrm{d} u=\frac{1}{x} \mathrm{~d} x\right)$ and $\mathrm{d} v=\mathrm{d} x($ so $v=x)$.

Using the initial condition $f(1)=[x \ln (x)+C]_{x=1}=1 \ln (1)+C=C=0$, we obtain $f(x)=$ $x \ln (x)$ and $\frac{f\left(2020^{2}\right)}{f(2020)}=\frac{2020^{2} \cdot \ln \left(2020^{2}\right)}{2020 \cdot \ln (2020)}=4040$.
10. The integral

$$
\int_{0}^{\frac{\pi}{2}} \frac{x}{\tan (x)} \mathrm{d} x
$$

can be written in the form $a^{b} \pi \ln c$, where a, b, and c are integers such that c is as small as possible. Compute $a+b+c$.
Answer: 3
Solution: Using the Feynman trick (differentiate under the integral sign), we rewrite the integral as

$$
\begin{aligned}
I(a) & =\int_{0}^{\pi / 2} \frac{\arctan (a \tan (x))}{\tan (x)} \mathrm{d} x \\
I^{\prime}(a) & =\int_{0}^{\pi / 2} \frac{1}{1+a^{2} \tan ^{2}(x)} \mathrm{d} x \\
& =\int_{0}^{\pi / 2} \frac{\sec ^{2}(x)}{\left(1+a^{2} \tan ^{2}(x)\right)\left(1+\tan ^{2}(x)\right)} \mathrm{d} x \\
& =\frac{1}{a^{2}-1} \int_{0}^{\pi / 2}\left(\frac{a^{2} \sec ^{2}(x)}{1+a^{2} \tan ^{2}(x)}-\frac{\sec ^{2}(x)}{1+\tan ^{2}(x)}\right) \mathrm{d} x \\
& =\frac{1}{a^{2}-1}[a \arctan (a \tan (x))-x]_{0}^{\pi / 2} \\
& =\frac{\pi}{2} \cdot \frac{1}{a+1} \\
I(a) & =\frac{\pi}{2} \ln (a+1)+C \\
I(0) & =\int_{0}^{\pi / 2} \frac{\arctan (0)}{\tan (x)} \mathrm{d} x \\
& =0 \\
& =C \\
\int_{0}^{\pi / 2} \frac{x}{\tan (x)} \mathrm{d} x & =I(1) \\
& =\frac{\pi}{2} \ln (2)+C \\
& =\frac{\pi}{2} \ln (2),
\end{aligned}
$$

which is equal to $2^{-1} \pi \ln 2$ (and is the only way to represent our answer in the given form). Our answer, therefore, is $2+(-1)+2=3$.

