1. Find the sum of the squares of all values of x that satisfy

$$
\log _{2}(x+3)+\log _{2}(2-x)=2 .
$$

Answer: 5

Solution: We use the sum rule for logs to get

$$
\log _{2}\left(-x^{2}-x+6\right)=2 .
$$

We raise 2 to the power of both sides of the equation, giving us

$$
-x^{2}-x+6=4
$$

Subtracting 4 from both sides gives us

$$
-x^{2}-x+2=(-x+1)(x+2)=0 \Longrightarrow x=-2,1
$$

which both satisfy the original equation (in both cases, $x+3>0$ and $2-x>0$, so the logarithms are defined) giving an answer of $(-2)^{2}+1^{2}=5$.
2. The polynomial $f(x)=x^{3}+r x^{2}+s x+t$ has r, s, and t as its roots (with multiplicity), where $f(1)$ is rational and $t \neq 0$. Compute $|f(0)|$.
Answer: 1
Solution: First, we have by Vieta's formulae that $r s t=-t$. Since $t \neq 0, r s=-1$, so we write

$$
s=-\frac{1}{r} .
$$

Now we also observe (from Vieta's formulae) that $r+s+t=-r$, so $t=-2 r-s=-2 r+\frac{1}{r}$. Now we can write

$$
\begin{aligned}
f(x) & =(x-r)(x-s)(x-t) \\
& =(x-r)\left(x+\frac{1}{r}\right)\left(x+2 r-\frac{1}{r}\right) \\
& =x^{3}+r x^{2}-\left(2 r^{2}-2+\frac{1}{r^{2}}\right) x-2 r+\frac{1}{r} \\
& =x^{3}+r x^{2}+s x+t \\
& =x^{3}+r x^{2}-\frac{1}{r} x-2 r+\frac{1}{r} .
\end{aligned}
$$

Equating the coefficients of x in the third and fifth lines above yields $\frac{1}{r}=2 r^{2}-2+\frac{1}{r^{2}}$, so $2 r^{4}-2 r^{2}-r+1=0$. We are given that

$$
f(1)=r+s+t+1=-r+1
$$

is rational, so r must be rational. By the rational root theorem, the only possible values for r are ± 1 and $\pm \frac{1}{2}$. A simple check reveals that $r=1$ is the only possibility, whence we find

$$
f(x)=x^{3}+x^{2}-x-1,
$$

so $|f(0)|=1$.
3. Let x and y be integers from -10 to 10 , inclusive, with $x y \neq 1$. Compute the number of ordered pairs (x, y) such that $\left|\frac{x+y}{1-x y}\right| \leq 1$.
Answer: 365
Solution: Either

$$
-1 \leq \frac{x+y}{1-x y} \Longrightarrow x+y \geq x y-1 \Longrightarrow x y-x-y-1 \leq 0 \Longrightarrow(x-1)(y-1) \leq 2
$$

by SFFT, or similarly,

$$
x+y \leq 1-x y \Longrightarrow x y+x+y+1 \leq 2 \Longrightarrow(x+1)(y+1) \leq 2 .
$$

Both of the boundaries of these graphs are hyperbolae, so we can observe that either $(x, y)=$ $(\pm 1,0),(0, \pm 1)$, or $(0,0)$, or one of the variables (but not both) is negative and the other is positive, giving $5+2 \cdot 10^{2}=205$ solutions for $|x|,|y| \leq 10$.
However, this is only for the case where x and y have opposite signs. In multiplying through by $1-x y$, we lose those cases in which x and y the same sign, as this makes $1-x y$ negative. Indeed, we have those pairs in the square with vertices at $(2,2),(2,10),(10,10),(10,2)$ and those pairs in the square with vertices $(-2,-2),(-2,-10),(-10,-10),(-10,-2)$ with the exception of the pairs $(2,2)$ and $(-2,-2)$, for an additional $2 \cdot 9^{2}-2=160$ ordered pairs. In total, there are $205+160=365$ satisfactory ordered pairs (x, y).

