1. Compute the maximum real value of a for which there is an integer b such that $\frac{a b^{2}}{a+2 b}=2019$. Compute the maximum possible value of a.

Answer: 30285

Solution: We can solve the equation for a, obtaining $a=\frac{4038 b}{b^{2}-2019}$. This is maximized when b^{2} is as close to 2019 while still exceeding it. We let $b=45$ and as a result $a=30285$.
2. If P is a function such that $P(2 x)=2^{-3} P(x)+1$, find $P(0)$.

Answer: $\frac{8}{7}$ or $1 \frac{1}{7}$
Solution: Plugging in $x=0$, we obtain

$$
P(0)\left(1-2^{-3}\right)=1
$$

so $P(0)=\frac{8}{7}$.
3. There are two equilateral triangles with a vertex at $(0,1)$, with another vertex on the line $y=x+1$ and with the final vertex on the parabola $y=x^{2}+1$. Find the area of the larger of the two triangles.

Answer: $45+26 \sqrt{3}$

Solution: We can shift all three vertices down one unit with no change to the areas of the triangle. We then have a vertex at $(0,0)$, another vertex at (a, a), and a third vertex at $\left(b, b^{2}\right)$. Representing as polar coordinates, they are at $0,(a+a i)$, and $b+b^{2} i$. We know that either $(a+a i)\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=b+b^{2} i$, or $\left(b+b^{2} i\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=a+a i$. Solving both, we see that our maximal triangle has solution where $a=5+3 \sqrt{3}$ (which comes from the first equation; the second equation only has the solution $a=b=0$), which gives us an area of $45+26 \sqrt{3}$.

