1. Compute the maximum real value of a for which there is an integer b such that $\frac{ab^2}{a+2b} = 2019$. Compute the maximum possible value of a.

Answer: 30285

Solution: We can solve the equation for a, obtaining $a = \frac{4038b}{b^2 - 2019}$. This is maximized when b^2 is as close to 2019 while still exceeding it. We let b = 45 and as a result a = 30285.

2. If P is a function such that $P(2x) = 2^{-3}P(x) + 1$, find P(0).

Answer:
$$\frac{8}{7}$$
 or $1\frac{1}{7}$

Solution: Plugging in x = 0, we obtain

$$P(0)(1-2^{-3}) = 1,$$

so
$$P(0) = \frac{8}{7}$$
.

3. There are two equilateral triangles with a vertex at (0,1), with another vertex on the line y = x + 1 and with the final vertex on the parabola $y = x^2 + 1$. Find the area of the larger of the two triangles.

Answer: $45 + 26\sqrt{3}$

Solution: We can shift all three vertices down one unit with no change to the areas of the triangle. We then have a vertex at (0,0), another vertex at (a,a), and a third vertex at (b,b^2) . Representing as polar coordinates, they are at 0, (a + ai), and $b + b^2i$. We know that either $(a + ai)(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = b + b^2i$, or $(b + b^2i)(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = a + ai$. Solving both, we see that our maximal triangle has solution where $a = 5 + 3\sqrt{3}$ (which comes from the first equation; the second equation only has the solution a = b = 0), which gives us an area of $45 + 26\sqrt{3}$.