1. Line segment \overline{AE} of length 17 bisects \overline{DB} iat a point C. If $\overline{AB} = 5$, $\overline{BC} = 6$ and $\angle BAC = 78$ degrees, calculate $\angle CDE$.

Answer: 39

Solution:

We draw a diagram as follows:

We construct line \overline{EG} such that $\angle EGC = \angle ABC = 78$.

We see that $\overline{EG} = \overline{GD} = 5$ so triangle ΔEGD is isosceles. Therefore, $2\angle GDE = \angle EGC$ and so $\angle CDE = \angle GDE = \boxed{39}$ and we are done.

2. Points A, B, C are chosen on the boundary of a circle with center O so that $\angle BAC$ encloses an arc of 120 degrees. Let D be chosen on \overline{BA} so that $\angle AOD$ is a right angle. Extend \overline{CD} so that it intersects with O again at point P. What is the measure of the arc, in degrees, that is enclosed by $\angle ACP$? Please use the tan⁻¹ function to express your answer.

Answer: $2(\tan^{-1}(\frac{5\sqrt{3}}{3}) - 30)$

Solution: We can draw line \overline{DO} past O, and draw the line from point C parallel to \overline{AO} , until they meet at point E. We can deduce that $\angle AOC = 120$ degrees, and so $\angle OCA = 30$, and $\triangle OEC$ is a 30-60-90 triangle, meaning that $\overline{OE} = \frac{\sqrt{3}}{2}$, and $\overline{EC} = \frac{1}{2}$. The measure of the arc we want will be $2 \times \angle ACP$, but we can get the measure of $\angle ECP$ with the tan⁻¹ function, by taking the arctan of \overline{PE} over \overline{EC} , and get the measure of $\angle ACP$ by subtracting 30 degrees off, to account for the extra angle given by $\angle ACE$. This gives us our answer of $2(\tan^{-1}(\frac{5\sqrt{3}}{3}) - 30)$

3. Consider a regular polygon with 2^n sides, for $n \ge 2$, inscribed in a circle of radius 1. Denote the area of this polygon by A_n . Compute

$$\prod_{i=2}^{\infty} \frac{A_i}{A_{i+1}}$$

Answer: $\frac{2}{\pi}$ Solution: The limit as *n* goes to infinity of A_n is πr^2 for polygons inscribed in a circle of radius *r*. Moreover $A_2 = 2r^2$. So

$$\lim_{j \to \infty} \frac{A_2}{A_j} = \frac{2}{\pi}$$

and since all the other terms telescope, we conclude that the infinite product tends to π .