1. Line segment $\overline{A E}$ of length 17 bisects $\overline{D B}$ iat a point C. If $\overline{A B}=5, \overline{B C}=6$ and $\angle B A C=78$ degrees, calculate $\angle C D E$.
Answer: 39

Solution:

We draw a diagram as follows:

We construct line $\overline{E G}$ such that $\angle E G C=\angle A B C=78$.
We see that $\overline{E G}=\overline{G D}=5$ so triangle $\triangle E G D$ is isosceles. Therefore, $2 \angle G D E=\angle E G C$ and so $\angle C D E=\angle G D E=39$ and we are done.
2. Points A, B, C are chosen on the boundary of a circle with center O so that $\angle B A C$ encloses an arc of 120 degrees. Let D be chosen on $\overline{B A}$ so that $\angle A O D$ is a right angle. Extend $\overline{C D}$ so that it intersects with O again at point P. What is the measure of the arc, in degrees, that is enclosed by $\angle A C P$? Please use the $\tan ^{-1}$ function to express your answer.
Answer: $2\left(\tan ^{-1}\left(\frac{5 \sqrt{3}}{3}\right)-30\right)$
Solution: We can draw line $\overline{D O}$ past O, and draw the line from point C parallel to $\overline{A O}$, until they meet at point E. We can deduce that $\angle A O C=120$ degrees, and so $\angle O C A=30$, and $\triangle O E C$ is a $30-60-90$ triangle, meaning that $\overline{O E}=\frac{\sqrt{3}}{2}$, and $\overline{E C}=\frac{1}{2}$. The measure of the arc we want will be $2 \times \angle A C P$, but we can get the measure of $\angle E C P$ with the $\tan ^{-1}$ function, by taking the arctan of $\overline{P E}$ over $\overline{E C}$, and get the measure of $\angle A C P$ by subtracting 30 degrees off, to account for the extra angle given by $\angle A C E$. This gives us our answer of $2\left(\tan ^{-1}\left(\frac{5 \sqrt{3}}{3}\right)-30\right)$
3. Consider a regular polygon with 2^{n} sides, for $n \geq 2$, inscribed in a circle of radius 1 . Denote the area of this polygon by A_{n}. Compute

$$
\prod_{i=2}^{\infty} \frac{A_{i}}{A_{i+1}}
$$

Answer: $\frac{2}{\pi}$ Solution: The limit as n goes to infinity of A_{n} is πr^{2} for polygons inscribed in a circle of radius r. Moreover $A_{2}=2 r^{2}$. So

$$
\lim _{j \rightarrow \infty} \frac{A_{2}}{A_{j}}=\frac{2}{\pi}
$$

and since all the other terms telescope, we conclude that the infinite product tends to π.

