1. Every face of a cube is colored one of 3 colors at random. What is the expected number of edges that lie along two faces of different colors?
Answer: 8
Solution: The probability that the two faces bordering an edge are different colors is $\frac{2}{3}$. There are 12 edges in the cube, so by linearity of expectation, the expected number of such edges is $12 \cdot \frac{2}{3}=8$.
2. 6 people stand in a circle with water guns. Each person randomly selects another person to shoot. What is the probability that no pair of people shoots at each other?

Answer: $\frac{1472}{3125}$

Solution: Use principle of inclusion exclusion.
Alternative solution: start from person 0, and follow chain of people shot till it returns to someone who already fired. Do casework on length of that path.
Case $n=3: \frac{4}{5} \cdot \frac{1}{5} \cdot\left(\frac{3}{5} \frac{24}{25}+\frac{2}{5}\left(\frac{3}{5}+\frac{4}{25}\right)\right)$
$n=4: \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{24}{25}$
$n=5: \frac{4323}{5} 55$
$n=6: \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{2}{5} \frac{14}{5}$
The answer is thus $\frac{440+576+360+96}{5^{5}}=\frac{1472}{3125}$.
3. Alice and Bob are playing rock paper scissors. Alice however is cheating, so in each round, she has a $\frac{3}{5}$ chance of winning, $\frac{2}{5}$ chance of drawing, and $\frac{2}{5}$ chance of losing. The first person to win 5 more rounds than the other person wins the match. What is the probability Alice wins?

Answer: $\frac{243}{275}$

Solution: Markov chain with state being difference in score, then Gambler's ruin. Let a_{k} probability of Alice winning given current score difference is k. We have the recurrence $a_{k}=$ $p a_{k+1}+q a_{k-1}$, with $a_{5}=1, a_{-5}=0$. The characteristic polynomial is then $z=p z^{2}-q$, which has roots $z_{1}=1, z_{2}=\frac{q}{p}$, so $a_{k}=C_{1} \cdot 1^{k}+C_{2} \cdot\left(\frac{q}{p}\right)^{k}$. Solving the boundary conditions, we have $a_{-5}=C_{1}+C_{2}\left(\frac{q}{p}\right)^{-5}=0, a_{5}=C_{1}+C_{2}\left(\frac{q}{p}\right)^{5}=1$, so $C_{2}\left(\left(\frac{q}{p}\right)^{k}-\left(\frac{q}{p}\right)^{-k}\right)=1$, so $C_{2}=\frac{(q / p)^{5}}{(q / p)^{10}-1}, C_{1}=\frac{-1}{(q / p)^{10}-1}$. We thus see that $a_{0}=\frac{(q / p)^{5}-1}{(q / p)^{10}-1}=\frac{1}{(q / p)^{5}+1}=\frac{1}{(2 / 3)^{5}+16}=\frac{243}{275}$

