1. Let $A B C D$ be a parallelogram. Suppose that E is on line $D C$ such that C lies on segment $E D$. Then say lines $A E$ and $B D$ intersect at X and lines $C X$ intersects $A B$ at F. If $A B=7, B C=13$, and $C E=91$, then find $\frac{A F}{F B}$.
2. The unit square $A B C D$ has E as midpoint of $A D$ and a circle of radius r tangent to $A B, B C$, and $C E$. Determine r.
3. The permutohedron of order 3 is the hexagon determined by points $(1,2,3),(1,3,2)$, $(2,1,3),(2,3,1),(3,1,2)$, and $(3,2,1)$. The pyramid determined by these six points and the origin has a unique inscribed sphere of maximal volume. Determine its radius.
