
TOURNAMENT ROUND SOLUTIONS

1. Round 1

1.

8051 = 8100− 49 = (90− 7)(90 + 7)

2. Recall that 1 = logx x. Thus, we have

[logxyz(x
z)][1 + logx y + logx z] = [logxyz(x

z)][logx x+ logx y + logx z]

= [logxyz(x
z)][logx xyz]

= [logx xyz][logxyz(x
z)]

= logx x
z

= z

3. The number of sequences with no A’s is 36; The number of sequences with no U’s is 36.The number of
sequences with no A’s or U’s is 26. The total number of sequences is 46. Thus by inclusion-exclusion, we
have that the number of sequences with no A’s or U’s is

2 ∗ 36 − 26 = 1394.

4. We want to have 17n + n divisible by 29, which means 17n ≡ −n mod 29. We have 171 ≡ −12,
172 = 289 ≡ −1 mod 29, 173 ≡ −17, and 174 ≡ 1 = −28 mod 29. Thus our possibilities for n < 29 having
17n ≡ −n are 12, 1, 17 or 28. But 1712 ≡ 1, 171 ≡ 17, and 1717 ≡ 17. However, 1728 ≡ 1 = −28. Thus,
our smallest positive solution is n = 28.

5. Label the angle between the side of length b and side of length c as θ, and label the width of rectangle R
as y. We then have

cos θ =
b

c

cos θ =
y

b
Setting the two equal yields

b

c
=
y

b
⇒ yc = b2

Therefore, the area of the smaller rectangle is b2 = 1024.

6. In general, there are
(
n
k

)
2n−k k-cubes in an n-cube (where k ≤ n). The vertices that define an n-cube can

be thought of as the set of strings (x1, ..., xn) where each xi ∈ {0, 1}. Then, a k-cube is a set of points
fixing all but k of the xis, and letting the others freely vary. There are

(
n
k

)
ways to choose which points

to fix, and 2n−k ways to decide what to fix them at. Thus, we have
(
n
k

)
2n−k k-cubes in an n-cube. When

n = 5 and k = 3, we have
(
5
3

)
22 = 40 3-cubes in a 5-cube.

2. Round 2

1. Let’s look at the probability of one bin being empty. The probability is simply
(
1− 1

n

)k
, since all balls

avoid this bin. Using linearity of expectation, our final answer is simply n ·
(
n−1
n

)k
= 625/216.

2. Using 221 = 13 · 17, we can take advantage of the fractal nature of Pascal’s triangle to calculate the

binomial coefficient modulo a prime. We get that

(
150

20

)
≡
(b 15013 c
b 2013c

)(
150 (mod 13)

20 (mod 13)

)
≡
(

11

1

)(
7

7

)
≡ 11

(mod 13). Equivalently, we have that
(
150
20

)
≡
(
8
1

)(
14
3

)
≡ 5 (mod 17). Using the Chinese Remainder

Theorem, we have
(
150
20

)
≡ 141 (mod 220)

3. Let ∠BAE = α. From the problem, we also have ∠EAC = ∠DBF = ∠FBC = α. Let ∠BCA = β. Since
ABC is a right trangle, and D is the altutide, by similarity, we have ∠DBA = β. ∠BFA can be computed
by 180−∠FBA−∠BAF = 180−(α+β)−2α, and using 2α+β = 90, we have ∠BFA = α+β = ∠FBA.
Thus, BAF is an isosceles triangle with sides BA and AF equal, and since AG is the angle bisector, G
bisects BF , so BG

GF = 1
1
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4. We want the largest integer so that n2−2012
n+7 is also an integer. Using long division, we obtain

n2 − 2012 = (n+ 7)(n) + (−7n− 2012) = (n+ 7)n+ (−7n− 49)− 1963

Thus n2−2012
n+7 is an integer iff 1963

n+7 is also an integer. The largest n this happens for is 1963− 7 = 1956.

5. We use coordinates. Let the pentagon vertices have the coordinates r, rei∗
2π
5 ,...,rei∗

8π
5 where r =

√
2√

5−
√
5
.

This leads to side length being 1. The largest equilateral triangle happens when one vertex of the triangle
is at a vertex of the pentagon, and the sides are symmetrically around the pentagon. WLG let the vertex
of the triangle be at r. Then one side length is the line y = − 1√

3
x+ 1√

3
r. Meanwhile, we want to find its

intersection with the edge of the pentagon, which is

y − r sin 2π/5 =
r sin 4π/5− r sin 2π/5

r cos 4π/5− r cos 2π/5
(x− r cos 2π/5).

A straightforward application of the law of sines gives us the final answer of 1/2 sec 24.

6. Consider the state where we already have k notes, and we want to know the expected number of LilacBalls
we need to open to get the remaining n − k notes. With probability n−k

n we will go to the state with

k + 1 notes, and with probability k
n we will stay in our original state. Let Ek be the expected number of

balls we need to open if we already have k distinct notes. Then, that means

Ek =
n− k
n

Ek+1 +
k

n
Ek + 1

with our base case En = 0. Simplifying the expression, we get Ek = Ek+1 + n
n−k , so

Ek =

n∑
i=k

n

n− k

and

E0 = n

(
1

1
+

1

2
+ . . .+

1

n

)
= n ·Hn

When n = 7, we have nHn = 657
80 .

3. Round 3

1. Let S ∈ T . Then, we have a corresponding set S′ = {x ∈ S : 2013 − x} in T , and we note that
A(S)+A(S′)

2 = 2013
2 . Because each such S can be matched with a unique such S′, we have that A(R) = 2013

2 .

2. For each hour, with the exception of 8:00 to 10:00 and 2:00 to 4:00, the minute and hour hands of a clock
will form a right-angle with each other twice. From 8:00 to 10:00, and again from 2:00 to 4:00, the minute
and hour hands will form a right angle only 3 times. Thus, we have

(8× 4) + (3× 4) = 44

Therefore, the minute and hour hands of a clock will form right angles with each other 44 times during
one day.

3. One pile will have n = 18 cards and the other will have m− n = 34 cards.
The algorithm for solving the problem is the following:
From the deck of m cards, Mike will take any n cards, flip them over, and set it aside as a second pile.

In the n cards, there will be x face-up cards and n − x face-down cards, where 0 ≤ x ≤ n. This means
that in the m− n cards in the other pile, there will be n− x face-up cards. When Mike flips the n-card
pile, there will then be x face-down cards, and n− x face-up cards. Therefore, both piles will have n− x
face-up cards.

4. Let x3+ax2+bx+c = (x−(n−1))(x−n)(x−(n+1)). Then a = −3n, b = (n−1)n+n(n+1)+(n−1)(n+1) =
3n2 − 1. a2/(b+ 1) = 9n2/3n2 = 3.

5. Note that the answer doesn’t even depend on p. Let Bn denote the number of blue balls after n iterations
and Gn denote the number of gold balls after n iterations. We want to find E[Bn]. Notice that we can
just iterchange blue and gold balls and still get the same result, so E[Bn] = E[Gn]. Also notice that
Bn+Gn = n+2, so E[Bn+Gn] = E[Bn]+E[Gn] = 2E[Bn] = E[n+2] = n+2, so E[Bn] = n+2

2 = 262801.
2
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6. First, we show E lies on circle ABD, which will symmetrically show that F lies on ABD. We have
∠ADB = θ, and symmetrically, ∠BCA = θ. Since C and E lie on circle B, we must have CB = EB,
so ∠BEC = ∠BCE = θ. That must mean ∠BEA = 180 − θ, which shows that DAEB is a cyclic
quadrilateral. Using this circle, we use power of a point. We have BG ·AG = GF ·EG→ BG(BG+10) =
8(12). Solving this for BG gives us BG = 6.

4. Round 4 Part 1

1. nSn − (S1 + S2 + . . .+ Sn−1)

= n(1/1 + 1/2 + ...+ 1/n)− (n− 1 ∗ 1 + (n− 2) ∗ 1/2 + ...+ 1 ∗ 1/(n− 1))

= 1 ∗ 1/1 + 2 ∗ 1/2 + ...+ n ∗ 1/n = n

2.

2cm

4cm

A

O

C

D

B

F

G

In the diagram above, A is the center of the circle of radius 2, C is the center of the circle of radius 4,
O is the center of the circle of the large circle that contains all the inside circles, D is the center of the
circle whose radius we’re trying to find, B is the point at which AD intersects the circle of radius 2 and
the circle whose radius we’re trying to find, F is the point at which CD intersects the circle of radius 4
and the circle whose radius we’re trying to find, and G is the point at which the extension of OD will
intersect the large circle. Letting the radius of the circle with center D be r, we can write the following:

AD = 2 + r OD = 6− r CD = 4 + r

AO = 4 AC = 8 OC = 2

Now consider triangles ∆ADO and ∆ODC. Since the two triangles have equal altitudes and the base of
∆ADO is twice the length of the base of ∆ODC, the area of ∆ADO is twice the area of ∆ODC. By
Heron’s formula

Area(∆ADO) =
√
s(s− 4)(s− (2 + r))(s− (6− r)) where s =

4 + (2 + r) + (6− r)
2

= 6

=
√

6(2)(4− r)(r)

=
√

12r(4− r)

Similarly,

Area(∆ODC) =
√
s(s− 2)(s− (4 + r))(s− (6− r)) where s =

2 + (4 + r) + (6− r)
2

= 6

=
√

6(4)(2− r)(r)

=
√

24r(2− r)
3
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Finally we have

2
√

24r(2− r) =
√

12r(4− r) ⇒ 4[24r(2− r)] = 12r(4− r)
⇒ 0 = r(7r − 12)

⇒ r =
12

7

Thus, the radius of the two identical circles that lies tangent to all three circles is 12
7 .

3. Notice the number of times xk in the sum
∑2n−2
i=0 xs(i) is preciesly

(
n
k

)
(the number of ways to distribute

the k bits among n bits). Observe this collapses to (x + 1)n. However, we are missing the term with all
the one terms set, so the inner sum is actually equal to (x+1)n−xn. This sum telescopes to 315576−1576,
so we want to take this mod 629. Notice ϕ(629) = 576, Both powers are equal to one, so this is equal to

0

4. We count the area outside of the middle portion. Consider cutting out the middle strip. We then have
the same parallelogram but with area k−1

k . Since there are two ways of cutting the middle strip out, we

add this in twice to get 2k−1k . But now, we have overcounted the triangles in the corner. We can compute
the area of these by slightly enlarging the opposite corners, and pasting them together to get another
parallelogram. We consider enlarging two different ways. Label the topleft and bottom right areas as A,
and the topright and bottom left areas as B. Then, if we scale a triangle by k, the area will scale by k2,
we have 2A( k

k−1 )2 +2B = k−1
k S and 2A+2B( k

k−1 )2 = k−1
S . We want to know what 2A+2Bis, so adding

the two equations and factoring, we have (( k
k−1 )2 + 1)(2A+ 2B) = 2k−1k S, so 2A+ 2B = 2(k−1)3

k(k2+(k−1)2)S.

Thus, we have the area outside of the middle portion equal to 2(k−1)
k − 2(k−1)3

k(k2+(k−1)2) = 2k(k−1)
k2+(k−1)2 . The

area in the middle portion is 1− 2k(k−1)
k2+(k−1)2 = (k−(k−1))2

k2+(k−1)2 = 1
k2+(k−1)2

5. A well known formula for Euler’s totient function is ϕ(n) = n(1 − 1
p1

)(1 − 1
p2

) · · · (1 − 1
pm

), where

p1, p2, . . . , pm are the distinct prime factors of n. Thus, n
ϕ(n) =

∏m
k=1 pk∏m

k=1(pk−1)
. Thus, to maximize this

quantity, we want n to have as many distinct prime factors as possible (and smaller primes will contribute
more to the quantity). We try 2 · 3 · 5 · 7 = 210, which is the best we can do. However, we can also

multiply 210 by 2 to get 420, which has the same n
ϕ(n) value, so our answer is 210 + 420 = 630 .

6. Suppose Link always makes a right move first. We can see that a way of Link reaching the bottom
right corner can be described as a set of indices where he takes turns. The set is chosen by selecting a
combination of bK2 c column indices and bK−12 c row indices amont N − 2 indices in each dimension (note

bK2 c + bK−12 c = K − 1). Thus, the answer is 2 ·
(
N−2
bK2 c

)
·
( N−2
bK−1

2 c
)
. Plugging in values N = 12,K = 6, we

have 2 ·
(
10
3

)
·
(
10
2

)
= 10800

5. Round 4 Part 2

1. We note that 1− 2 + 3− 4 + ...+n = −(n− 1)/2 +n = (n+ 1)/2. Since 2012 = (n+ 1)/2, then n = 4023.
42012 ≡ 24024, and 4023 = 33 ∗ 149. Now, we want to find 24024 mod 27, and 24024 mod 149. 218 ∼= 1
mod 27 so 24024 ∼= 210 ∼= 25 and 2148 ∼= 1 mod 149 so 24024 = 228 = (128)4 = (−20)4 = 204 = 123 mod
149. Using the CRT, we get 123 mod 149 and 25 mod 27 is 3103 mod 4023.

2. Clearly ∠PBA = 45, so we can ignore this term for now. Consider six unit squares arranged in two
rows of three. Label the top right most vertex R, the leftmost middle vertex S and the second from the
right on the bottom row T . Also label the bottom left most vertex X, the bottom right most vertex
Y and the topleft most vertex Z. Clearly, ∠TRY = ∠PCA, ∠ZRS = ∠PDA, and ∠ZRY = 90, so
we know ∠PCA + ∠PDA = 90 − ∠SRT . Notice ∆STX = ∆TRY , and since ∠SXT = 90, we must
have ∠STR = 90. In addition, ST = RT , so STR is an iscoceles right triangle so ∠SRT = 45, thus

∠PBA+ ∠PCA+ ∠PDA = 90◦

4



TOURNAMENT ROUND SOLUTIONS

3. 9(x2−2x+1)
x2−8x+16 = 9(x−1)2

(x−4)2

=
9(x− 1)2

(3− (x− 1))2

=

(
3(x− 1)

3− (x− 1)

)2

=

(
3(x− 1)

3− (x− 1)

)2

=

(
3

3
x−1 − 1

)2

= f(f(x))2

4. Let M be the tangent point of F on BC and K be the tangency point of F on BD.
We have ∠DBC = ∠BAD = α, and ∠DBF = ∠EAD = α

2 and ∠ADE = ∠BDF = 45, so ∆AED is

similar to ∆BFD. By similarity, AD
BD = ED

DF , which also shows that ∆ABD is similar to ∆EFD. We
have ∠BFE = 180− α

2 − β − 45 = α
2 + ∠BGF , so ∠BGF = 45. Now, we have ∠FKB = ∠FMB = 90,

which implies MG == KD and BG = BD. Symmetrically, this shows BH = BG = BD. Thus, since

this is a simple isosceles right trangle, the area is equal to BD2

2 . In an 8,15,17 triangle, we have

a2b2

2(a2 + b2)
= 7200/289

5. Look at any sequence of k elements. The probability that it is a k-inversion is 1
k! . Using linearity of

expectation, the number of k-inversions is just
(
n
k

)
1
k! = 7/24.

6. Initially, we start at a score of zero. Let’s look at what happens when we add the ith coin, which can be
placed randomly in the range [1, i]. We want to look at the difference in the expected score. Suppose the
coin is placed on a square with x coins. The difference in score will just be (x+ 1)2 − x2 = 2x+ 1, so all
we need to do is calculate the expected value of x. But this is really simple, since we have placed i − 1
coins and we have i squares, so this is just i−1

i . That means our answer is

n∑
i=1

(
2 · i− 1

i
+ 1

)
= 2(n−Hn) + n = 3n− 2Hn = 1343/80

6. Championship Round

1. 2n+ 1 = 1441692 = (144168 + 1)2 = 4 · 720842 + 4 · 72084 + 1. Thus n+ 1 = 2 · 720842 + 2 · 72084 + 1 =
720842 + (72084 + 1)2 and the numbers we want are 72084 and 72085.

2. Let En be the maximum expected value of John’s winnings if he currently has an n-sided dice. Clearly,
for our base case, we can conclude E2 = 3

2 .
Now, John will only want to roll an n− 1 sided dice if the expected winnings of rolling it is higher than
what he currently rolled. For example, for n = 3, there are three possibilities, he rolls a 1, 2 or 3. If he
rolls a 1, he will choose to roll again, but if he gets a 2 or 3, he will decide to stop since his expected
winnings of continueing is less than his current total. Therefore, E3 = 2+3

3 + E2

3 = 13
6 .

Continuing on a similar pattern, we find E4 = 4+3
4 + 2·E3

4 = 17
6 , E5 = 5+4+3

5 + 2·E4

5 = 53
15 , so

E6 =
6 + 5 + 4

6
+

3 · E5

6
=

64

15

3. f − 7 has 6 zeros at 1,2,3,4,5,6. Thus, f − 7 = (x− 1)...(x− 6). Which gives a = −21.

4. We note that the original condition is equivalent to saying 5a + 3b and 5b − 3a are both powers of 2.
Without loss of generality, we may assume not both of a and b are even, otherwise a/2 and b/2 would
do the job just as well. Since 5a + 3b is a power of 2 and thus even, this means both a and b are odd.
Call 5a + 3b = 2m and 5b − 3a = 2n. Then 8b + 2a = 2m + 2n. Since a and b are odd, 2m + 2n thus
has only 1 factor of 2. This can only happen if one of m or n is equal to 1. Since a and b are positive,
then, n = 1 and 5b − 3a = 2. Meanwhile 4b + a = 2m−1 + 1. We notice that since 5b − 3a = 2, b = 1

5
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mod 3. Since b is odd, then, let b = 6c + 1. It’s clear that then a = 10c + 1 to have 5b − 3a = 2. Then
5(10c + 1) + 3(6c + 1) = 2m and thus 68c + 8 = 2p, so 17c + 2 = 2p−2. This means 2p−2 ≡ 2 mod 17.
The smallest p this happens for is p = 11; thus, 17c+ 2 = 512 and c = 30. This gives

a = 301, b = 181, a+ b = 482

satisfying all our initial conditions.

5. Draw a circle with points A,C,E. Notice D must be the center of the circle since it is equidistant from
all three points. Also note ∠AEC intercepts the arc formed by ∠CDA, and since D is in the center and
E is on the circle ∠AEC must be half of ∠CDA. But ∠CDA is just 90 by definition of a square, so

∠AEC = 45◦ .

6. George will win in at most 7 moves.
Assuming that Ted’s initial configuration of the coins weren’t all face-up or face-down, this implies

that the initial configuration must be one of the following cases: 1 face-up, 3 face-down; 2 face-up, 2
face-down; 3 face-up, 1 face-up. Since our goal is to turn all of the coins either face-up or face-down, we
will regard the first and last case listed as the same case; hence, there are only two configurations we
must examine.

Let’s also examine the number of different moves we can make. There are actually only three different
types of moves we can choose from: flipping two coins on either diagonal, flipping two coins on any one
side, or flipping one coin. Note that flipping two coins on one of the diagonals is equivalent to flipping
the two coins on the other diagonal; flipping two coins on any one side is equivalent to flipping the two
coins on the other side (and remember that since Ted has the opportunity to rotate the index card after
each of George’s turn, we don’t need to be concerned with which side of the index card from which we
chose are two coins); lastly, flipping one coin is equivalent to flipping the other three.

Now, let’s consider all of the cases along with the least number of moves that we must make in order
to win. Let a 2× 2 matrix represent the layout of the coins on the index card, where a u represents the
coin is face-up while a d represents the coin is face-down.

Case 1: [
u d
d u

]
Notice that any rotation of this matrix will yield a matrix of the same layout. In this case, we will win if
we flip either of the two diagonals. Therefore, only 1 move is required.

Case 2: [
u u
d d

]
Notice that any rotation of this matrix will yield a matrix of a similar layout (2 face-ups in a row/column
and 2 face-down in the other row/column). In order to solve this case, we would hope to flip the correct
row/column, which means we would only need 1 move. However, if the face-up/face-down coins are
organized in rows (like above) and we flip a column or vice versa, we will get some rotation of Case 1,
which we can solve in 1 move. Therefore, for Case 2, we need at most 2 moves to win.

Case 3: [
u d
d d

]
Notice that any rotation of this matrix will yield a matrix of a similar layout (1 face-up and 3 face-downs).
Also, notice that [

d u
u u

]
and any rotations of this matrix will yield similar cases of the first matrix. In order to solve this case, we
would hope to flip the correct 1 coin (or similarly, correct 3 coins). If we are lucky and we guessed right,
then we would only need 1 move. However, if we guess wrong, we will end up in either Case 1 or Case 2,
depending on which coin, or which 3 coins, we chose to flip. (I’m leaving out the number of moves needed
to solve Case 3 because it includes an extra case that will be examined below. Just keep in mind that if
we flip the wrong 1 coin, we will end up in either Case 1 or Case 2.)

Putting it all together:
Based on the results above, we’d want to check to see whether or not the initial configuration falls

under Case 1, which means we only need 1 move to solve. Thus, our first move should be to flip the 2
6
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coins on either diagonal. If Case 1 was indeed the initial configuration, then we’re done. However, if not,
then the initial configuration falls under either Case 2 or Case 3. Note that in either of the two cases,
flipping the 2 coin on either diagonal will actually keep the configuration of the coins in the same case.
(Flipping a diagonal in Case 2 will yield a configuration in Case 2, and the same goes for Case 3.) Next,
we’d want to check to see which of the 2 remaining cases the coins are now in. Based on the results above,
we’d want to check to see if the configuration of the coins fall under Case 2, which means we only need 2
moves to win. If Case 2 was indeed the initial configuration, then we would have taken a total of 3 moves
to win. If not, then that means the initial configuration was in Case 3. (Note that the moves we have
made so far, flipping 2 of a diagonal and flipping 2 in any row/column, will send a Case 3 configuration
to another Case 3 configuration. This means if we still haven’t won by move 3, the initial configuration
must have been a Case 3.) Thus, for our next, 4th move, we will want to flip any 1 coin (similarly, any
3 coins). If we guessed correctly, then will have won in 4 moves. However, if we guessed wrong, then our
configuration is now a Case 1 or Case 2. This then brings us back to where we started. Between Case
1 and Case 2, we want to check for a Case 1 first by flipping any diagonal. If it was a Case 1, then we
would have taken 5 moves to win. If not, then then it must have been a Case 2 which requires 2 moves
to win, bringing us to a total of a maximum of 7 moves to win.

7. Consolation Round

1. This is caused by having exactly two increasing sequences of numbers with a descent in the middle. For
each one of these, we can consider the set A consisting of elements in the first sequence, and B consisting
of elements in the second sequence. There are 2n ways of creating two sets like that. However, n + 1 of
those ways won’t work, as then A’s elements arranged in increasing order, concatenated with B’s elements
arranged in increasing order, will result in the sequence 1, 2, ..., n which has no descents. Thus the total
number of ways to have exaclty one descent is 2n − n− 1.

2. WLOG let each triangle have sides a, b, c where a < b < c. Of course a+ b+ c = 2012
For a fixed c, how many different triangles can we make with perimeter 2012.
First of all, see that

⌈
2012
3

⌉
= 671 < c <

⌈
2012
2 − 1

⌉
= 1005

Now since b ≤ c and b = 2012− a− c, we have 2012− a− c ≤ c or rather a ≥ 2012− 2c
And also since a ≤ b = 2012− a− c, 2a ≤ 2012− c
Now suppose c ∈ [671, 1005] and a ∈

[
2012− 2c,

⌊
2012−c

2

⌋]
and let b = 2012 − a − c (the above

calculations show that no other positive choices of a, b, and c add to 2012 and satisfy the triangle
inequality)

Verify that the triangle inequality is satisfied for any such choice of a and c
Now we see that if c is even, there are 2012−c

2 − (2012− 2c) + 1 = 3c
2 − 1005 possible triangles we can

make and if c is odd there are 2012−c−1
2 − (2012− 2c) + 1 = 3c−1

2 − 1005 possible triangles.
So for the even c′s, the sequence of numbers of possible triangles goes:
672 674 676 . . . 1004

3 6 9 . . . 501
and the sequence has 167 terms so the sum is (3+501)∗167

2 = 252 ∗ 167

And for the odd c′s, the sequence is
671 673 675 . . . 1005

1 4 7 . . . 502
and the sequence has 168 terms so the sum is (1+502)∗168

2 = 503 ∗ 84 so

the total number of such triangles is 252 ∗ 167 + 503 ∗ 84.

3. A well known formula for Euler’s totient function is ϕ(n) = n(1 − 1
p1

)(1 − 1
p2

) · · · (1 − 1
pm

), where

p1, p2, . . . , pm are the distinct prime factors of n. Thus, n
ϕ(n) =

∏m
k=1 pk∏m

k=1(pk−1)
. Notice the only even prime

is 2, so 2 must be a factor of n, and there can only be exactly one other prime factor of n. We plug
in three and notice the quantity is equal to three, so n can only have primes 2, 3. No other primes will
work. So we have changed this to the equivalent problem of calculating the sum of the recipricols of the
numbers whose primes factors are exactly 2, 3. But this is not too difficult to calculate. Consider the sum( ∞∑
i=1

1

2i

) ∞∑
j=1

1

3j

. We claim this product holds all our desired numbers. To see why this is true, every
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term in the sum will be in the form 1
2i3j , for any i, j, so this satisfies all our constraints. The sums can

be calculated by sum of an infinite geometric series, giving us 1 · 12 =
1

2
.

4. We claim that f(1) + ...+ f(2n) = 22n−1
3 + 1, and we use induction to prove this. When n = 1, we have

f(1) + f(2) = 2, satisfying our base case. Suppose it’s true for 2n−1. Then for 2n,

f(1) + ...+ f(2n) = f(1) + f(3) + ...+ f(2n − 1) + f(2) + ...+ f(2n)

= 1 + 3 + ...+ 2n − 1 + f(1) + ...+ f(2n−1)

= 2n · 2n−2 +
22(n−1) − 1

3
+ 1

=
4 · 22(n−1) − 1

3
+ 1

=
22n − 1

3
+ 1,

completing the induction. Then,

f(1) + ...+ f(30) = f(1) + ...+ f(32)− 31− 1 = 1023/3− 31 = 310

5. Consider adding one square to the triangle. By similarity, we must have b
x = h

h−x , so x = bh
b+h . Let

h0 = h, b0 = b, and bn = bn−1hn−1

bn−1+hn−1
, and hn = hn−1−bn. By induction, we can prove that bn = b

(
h
b+h

)n
,

and hn = h
(

h
b+h

)n
. We sum this infinite series of b2n, to get bh2

b+2h = 1090000/209

6. Let D be the directrix of the parabola. Let D1, D2 be the point on the directrix closest to P1, P2

respectively. Let ∠D1P1F = 2α,∠D2P2F = 2β. Consider the two lines l1, l2 going through points D1, P1

for l1 and D2, P2 for l2. Then, since l1, l2 are parallel, we have that 2β + 2α = 180. Thus, β + α = 90, so
∠P1QP2 = 90
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