
TEAM ROUND SOLUTIONS

1. Notice for each real number x, 1−x also has a repeating cycle. Thus, we can pair up all our numbers, so it
suffices to count the number of arrangments of distinct digits, and divide by two. First, we choose a nonzero
subset of the digits {0, 1, 2, 3, 4, 5}. Then, if k is the size of our subset, we have k! ways of arranging those

digits, thus, the number of ways is
∑6

i=1

(
6
i

)
i!, which is equal to 6+15·2+20·6+15·24+6·120+720 = 1956.

We divide by two to get the sum equal to 978

2.
254∏
k=1

logk+1(k + 2)uk =

254∏
k=1

uk

254∏
k=1

logk+1(k + 2)

=

254∏
k=1

uk

254∏
k=1

log(k + 2)

log(k + 1)

=

254∏
k=1

uk ·
log 2

log 256

= 8
254∏
k=1

uk

= 8

(
(−1) · 1

1
· (−3) · 1

3
· ... · (−253) · 1

253

)
= 8 · (−1)127 = −8.

3. Label the sides of the triangle a, b, c, and the angles α, β, γ. We have the squared lengths S1, S2, S3 to be

S2
1 = a2 S2

2 = b2 S2
3 = c2

The squared lengths of S4, S5, S6 are

S2
4 = c2 + b2 + 2cb cos(α) S2

5 = a2 + c2 + 2ac cos(β) S2
6 = a2 + b2 + 2ab cos(γ)

Thus,

S2
4 + S2

5 + S2
6

S2
1 + S2

2 + S2
3

=
2(a2 + b2 + c2) + 2ab cos(γ) + 2bc cos(α) + 2ac cos(β)

a2 + b2 + c2

But the above expression can be simplified by using law of cosines even more, by substituting 2ab cos(γ) =
a2 + b2 − c2, and equivalently for the other two terms, and we get it to simplify to

2(a2 + b2 + c2) + a2 + b2 + c2

a2 + b2 + c2
= 3

4. Let p be the probability that a mission with the spy fails, and let n be the total number of people. Let
Ai be the event person i is the spy, and let B the event that the first n − 1 missions succeed, but the

last mission fails. Then, we want to compute Pr[An|B] = Pr[B|An]Pr[An]
Pr[B] . The probability of B can be

computed by considering cases. The probability of B is given by
∑n

i=1 Pr[B|Ai]Pr[Ai]. But Pr[Ai] = 1
n

symmetrically, and Pr[B|Ai] = (1−p)n−ip, since the first i−1 missions are guaranteed to succeed, the next

N− i missions need to succeed, and the last mission fails. Thus. Pr[B] = p
n

∑n
i=1(1−p)n−i = p

n
1−(1−p)n

p .

Thus, Pr[An|B] =
p 1

n
1−(1−p)n

n

= p
1−(1−p)n

When p = 1/2, n = 12, we have 0.5/(1− (1/2)12) = 211/212 − 1 = 2048/4095

5. Let n = 10a+d, so f(n) = a+md. We want 10a+d ≡ 0 (mod p) =⇒ a+md ≡ 0 (mod p), so, we have
d ≡ −10a (mod p). Plugging this in to our second equation, we have a(1− 10m) ≡ 0 (mod p), which we
want to be true for any a, so we must have 10m ≡ 1 (mod p). Thus we want the inverse of 10 modulo

2013 which is our value of m, which can be found by 2013·3+1
10 = 604 .

6. Consider coordinates. Circle a will have diameter p, and circle b will have diameter 1− p. The diameter

of circle s is given by the height of the circle at point p, which is just
√

1− p2. Circle t will have the

same diameter. Thus, we must have A(s) + A(t) = 2
(

1−p2

2

)2
π, and A(a) + A(b) =

(
p
2

)2
π +

(
1−p
2

)2
, so

the ratio is equal to 2(1−p2)
2p2−2p+1 . When p = 1/42, we have 1763/841.
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7. Without loss of generality, assume Bob travels with speed 1. Call Alice’s same-line-segment speed a2 and
her different-line-segment speed a1.
Suppose that Alice is at the start of a line segment of length y, and Bob is a distance x < y along the same
line segment. Then, when Bob has reached the end of this segment, Alice will have traveled (y − x) ∗ a2,
and Bob and Alice will now be y(1− a2)− a2x apart.

Then, Alice will spend y(1−a2)−a2x
a1

time to travel to the beginning of the next segment. During this time,

Bob will have traveled y(1−a2)−a2x
a1

and thus they will be y(1−a2)−a2x
a1

apart.
Now, let xi be the distance apart Alice and Bob are when Alice is at the beginning of the segment with
length 1

2i (and we note that if xi >
1
2i , then Alice can never catch up). Then we have x0 = 1,

xi =
1

2i−1 (1− a2) + a2xi−1

a1

assuming that xi ≤ 1
2i at all times. We claim that this holds true when x0 ≤ 2(a2−1)

2a2−a1
. In fact, we claim

that if x0 ≤ 2(a2−1)
2a2−a1

, then xi ≤ 2(a2−1)
2i(2a2−a1)

and prove this by induction. Suppose it holds for all 1, ..., i− 1,

and that x0, ..., xi−1 > 0. Then we have

xi =

1
2i−1(1−a2)

+ a2xi−1

a1

≤ 1− a2
2i−1a1

+
a2
a1
· 2(a2 − 1)

2i−1(2a2 − a1)

=
(1− a2)(2a2 − a1) + 2a2(a2 − 1)

a12i−1(2a2 − a1)

=
(a2 − 1)

2i−1(2a2 − a1)
.

Thus Alice gets arbitrarily close to Bob as they move along the path; at some point at or before S, then,
Alice will catch up to Bob. when a2 = 1.28, a1 = 0.6, then we have 28/75.

8. A well known formula for the totient function ϕ(n) is n
∏
p|n

(
1− 1

p

)
, where p is a prime. Using this, we

can compute φ(13r) for any natural number r.
We can split this into two parts, one part where we still have a factor of 13, and when we don’t. We’ll
calculate the number of steps in each case.
• Phase 1: There is still a factor of 13. 13 will decompose to 22 · 3 under the totient function. Also,

3 will go to 2, and 2 will go to 1, so we can conclude after k ≤ r steps, the number is in the form
22k · 3 · 13r−k. After r steps, we have the number 22r · 3.
• Phase 2: First, one step will convert the number to 22r. After this, it will take 2r steps to remove

all the factors of two one by one. This phase takes 2r + 1 steps.
Thus, the total number of steps is 3r + 1, and when r = 2012, we have 6037 steps.

9. The first step is to come up with an algorithm. Clearly, we can always do this in n moves, just take the
largest element, move it to the front, then the next largest, and so on until the list is sorted. However, we
can do better. We don’t actually have to move the largest element to the front. Instead, what we could
do is take the second largest element, then the third largest, and so on, and the list wil be sorted. This
algorithm takes n− 1 moves for any list.
However, if the second largest and largest elements are already ordered (i.e. the second largest appears
before the largest), we don’t actually have to move them. That means it really only takes n − 2 moves.
We can extend this argument. Let us say the top k elements are already partially ordered. Then, the
algorithm will take n−k moves. Thus, it suffices to find the expected number of elements that are already
partially ordered.
To show we can’t do better, we know the number of elements that are out of place is n− k, and since we
need to process them at least once, n − k is our lower bound. Thus, the optimal algorithm takes n − k
steps.
Now, to find the expected number of partially ordered elements, we can see 1 element that is already in
order. The probablity that n−1 and n are ordered in increasing order is 1

2! , and in general, the probability

that the last k numbers are ordered in increasing order is 1
k! . Thus, we have the expected length of the
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increasing sequence equal to 1 · 1 + 2 · 1
2! + 3 · 1

3! + 4 · 1
4! + 5 · 1

5! + 6 · 1
6! = 163

60 . The expected number of

swaps is just 6− x, where x is the expected length of the increasing sequence, so our answer is 197
60

10. Let M be the number of coins, k be the number of coins flipped per iteration, and N be the number of
iterations performed.
Let us focus on one coin only. We want to find the probability that it is heads after N iterations. This
is just the probability that the coin was flipped an even number of times. Let p be the probability that
the coin is flipped in one iteration. Then, we just count the number of ways the coin could be flipped 0
times, 2 times, and so on. The expression is(

N

0

)
p0(1− p)N +

(
N

2

)
p2(1− p)N−2 +

(
N

4

)
p4(1− p)N−4 + . . .+

(
N

bN2 c

)
pb

N
2 c(1− p)N−bN2 c

It is possible to reduce this expression. The coefficient of pm can be found by the sum

bm/2c∑
k=0

(
N

2k

)
(−1)m−2k

(
N − 2k

m− 2k

)
Notice that the (−1)m−2k = (−1)m which is constant regardless of k, so we pull it out. Also, we can get

a tidier expression. We have
(
N
2k

)(
N−2k
m−2k

)
= (N)!

(N−2k)!(2k)!
(N−2k)!

(N−m)!(m−2k)!
m!
m! =

(
N
m

)(
m
2k

)
. Since the first term

doesn’t depend on k, we can pull it out to get the sum

(−1)m
(
N

m

) bm/2c∑
k=0

(
m

2k

)
But, this is easy to calculate, since it’s the number of even sized subsets of m elements, which is just
simply 2m−1 (note for m = 0, we have a special case that this is 1). Thus,

bm/2c∑
k=0

(
N

k

)
(−1)m−2k

(
N − 2k

m− 2k

)
= (−1)m2m−1

(
N

m

)
which is the coefficient of pm in the sum. However, note the argument only works for m > 0, so we’ll
need other means to compute the coefficient for p0. However, this is easy. The only contribution comes
from the first term, which is simply 1. Thus, we have our sum is equivalent to

1− 1

(
N

1

)
p1 + 2

(
N

2

)
p2 − 4

(
N

3

)
p3 + . . .− (−2)N−1

(
N

N

)
pN

We can rearrange this sum a bit in order to compress it. Rearranging gives us

1

2

(
1 + 1−

(
N

1

)
21p1 +

(
N

2

)
22p2 −

(
N

3

)
23p3 + . . .+

(
N

N

)
(−2)NpN

)
This reduces to

1

2

(
1 + (1− 2p)

N
)

Using linearity of expectation, the expected number of heads is thus

M

2

(
1 + (1− 2p)

N
)

We note that p = k
M , thus, we have

M

2

(
1 +

(
1− 2k

M

)N
)

=
1 + (M − 2k)N

2MN−1

When M = 728, N = 4001 and k = 314, we obtain

=
1 + 1004001

2 · 7284000
.

The top and bottom are relatively prime because 728 = 8 · 7 · 13, and the top is obviously odd. It is also
not divisible by 7 or 13. Thus we have

1 + 1004001 + 2 · 7284000 mod 10000 ≡ 1 + 2 · 7284000.
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Since 7284000 ≡ 0 mod 16, it now suffices for us to find 7284000 mod 625. This is equal to 1 because
ϕ(625) = 500|4000 and gcd(728, 625) = 1. Then by the Chinese Remainder Theorem, 7284000 ≡ 9376
mod 10000 and our answer is

2 ∗ 9376 + 1 = 8753.
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