1. If the pairwise sums of the three numbers x, y, and z are 22,26 , and 28 , what is $x+y+z$?

Answer: 38

Solution: Let $x+y=22, x+z=26$, and $y+z=28$. Adding up the equations gives $2 x+2 y+2 z=$ $76 \Longrightarrow x+y+z=38$.
2. Suhas draws a quadrilateral with side lengths $7,15,20$, and 24 in some order such that the quadrilateral has two opposite right angles. Find the area of the quadrilateral.

Answer: 234

Solution: Observing that $7-24-25$ and $15-20-25$ are pythagorean triples, we find that Suhas's quadrilateral $A B C D$ has $A B=7, B C=24, C D=15$, and $D A=20$. Consequently, $\angle A B C=$ $\angle C D A=90$ degrees. Using the pythagorean theorem, we find that no other configuration of Suhas's quadrilateral is possible. In particular, we find that the two right triangles can neither have legs 7 and 15 , and 20 and 24 , respectively, nor have legs 7 and 20 , and 15 and 24 , respectively. This is because $7^{2}+15^{2}<20^{2}+24^{2}$, and $7^{2}+20^{2}<15^{2}+24^{2}$ so in particular $7^{2}+15^{2} \neq 20^{2}+24^{2}$ and $7^{2}+20^{2} \neq 15^{2}+24^{2}$. The area of this quadrilateral is the sum of the areas of triangles $\triangle A B C$ and $\triangle C D A$, which is $\frac{1}{2} \cdot 7 \cdot 24+\frac{1}{2} \cdot 15 \cdot 20=234$.
3. Let $(n)^{*}$ denote the sum of the digits of n. Find the value of $\left(\left(\left(\left(985^{998}\right)^{*}\right)^{*}\right)^{*}\right)^{*}$.

Answer: 7

Solution: Let $N=985^{998}$. Notice that the remainder of the sum of the digits of n when divided by 9 is equal to the remainder when n is divided by 9 . Since $N=985^{998}<1000^{1000}$, N has at most 3000 digits, so the sum of digits is at most $9 \cdot 3000=27000$ and consequently N^{*} has at most 5 digits. Because $(N)^{*}$ has at most 5 digits, the sum of the digits of $(N)^{*}$ is at most $9 \cdot 5=45$. By a similar argument, we find that $\left(\left(\left((N)^{*}\right)^{*}\right)^{*}\right.$ is at most 18 , and $\left(\left(\left((N)^{*}\right)^{*}\right)^{*}\right)^{*}$ is at most 9 , so $\left(\left(\left((N)^{*}\right)^{*}\right)^{*}\right)^{*}$ is just equal to its remainder when divided by 9 . We thus have $985^{998} \equiv(4)^{998} \equiv 4^{2} \equiv 7(\bmod 9)$ by Euler's theorem.
4. Everyone wants to know Andy's locker combination because there is a golden ticket inside. His locker combination consists of 4 non-zero digits that sum to an even number. Find the number of possible locker combinations that Andy's locker can have.

Answer: 3281

Solution: Andy's locker combination can be four odd digits, four even digits, or two odd digits and two even digits. The total number of locker combinations with four even digits is $5 \cdot 5 \cdot 5 \cdot 5=625$ possibilities. The total number of locker combinations with four odd digits is $4 \cdot 4 \cdot 4 \cdot 4=256$ digits. The total number of locker combinations with two odd digits and two odd digits is $\binom{4}{2} \cdot 5 \cdot 5 \cdot 4 \cdot 4=2400$ because there are $\binom{4}{2}$ ways to choose the two even digits and $5 \cdot 5 \cdot 4 \cdot 4$ ways to pick the digits themselves. Adding up all these cases yields $625+256+2400=3281$ possible locker combinations.
5. In triangle $A B C, \angle A B C=3 \angle A C B$. If $A B=4$ and $A C=5$, compute the length of $B C$.

Answer: $\frac{3}{2}$ OR $1 \frac{1}{2}$ OR 1.5

Solution:

Construct D and E lie on line segment $A C$ such that $\angle A B D=\angle D B E=\angle E B C$. Let $\angle A C B=$ θ. Then we have $\angle A B C=3 \theta$ and $\angle A B D=\angle D B E=\angle E B C=\theta$. First, note that $\angle A E B=$ $\angle E B C+\angle E C B=2 \theta=\angle A B E$, so $A B=A E=4$ and $B E=E C=1$.
Notice that $\angle D E B=2 \theta=\angle D B C$ and $\angle D B E=\theta=\angle D C B$. Thus, by AA similarity, triangle $D B E$ similar to $D C B$, so $\frac{D B}{D E}=\frac{D C}{D B} \Longrightarrow D B^{2}=D E \cdot D C$.
By the Angle Bisector Theorem, $\frac{A D}{D E}=4$. Since $A E=A D+D E=4$, so $A D=\frac{16}{5}$ and $D E=\frac{4}{5}$.
Thus, $B D=\sqrt{D E \cdot D C}=\sqrt{\frac{4}{5}\left(\frac{4}{5}+1\right)}=\sqrt{\frac{36}{25}}=\frac{6}{5}$. Finally, by similar triangles, $\frac{A B}{B D}=\frac{A C}{B C}$, so $B C=\frac{B D \cdot A C}{A B}=\frac{\frac{6}{5} \cdot 5}{4}=\frac{3}{2}$.

