1. What is the sum of the first 12 positive integers?

Answer: 78

Solution: By the formula for the sum of an arithmetic series,

$$
1+2+\cdots+12=\frac{12 \cdot 13}{2}=78
$$

2. How many positive integers less than or equal to 100 are multiples of both 2 and 5 ?

Answer: 10
Solution: A positive integer is a multiple of both 2 and 5 if and only if it is a multiple of 10. There are $\frac{100}{10}=10$ positive multiples of 10 less than or equal to 100 .
3. Alex has a bag with 4 white marbles and 4 black marbles. She takes 2 marbles from the bag without replacement. What is the probability that both marbles she took are black? Express your answer as a decimal or a fraction in lowest terms.
Answer: $\frac{3}{14}$
Solution: The probability of drawing two black marbles without replacement is

$$
\frac{4}{8} \cdot \frac{3}{7}=\frac{3}{14}
$$

4. How many 5 -digit numbers are there where each digit is either 1 or 2 ?

Answer: 32

Solution: There are 2 choices for each digit, and there are 5 digits, hence there are $2^{5}=32$ possible numbers.
5. An integer a with $1 \leq a \leq 10$ is randomly selected. What is the probability that $\frac{100}{a}$ is an integer? Express your answer as decimal or a fraction in lowest terms.

Answer: $\frac{1}{2}$ OR 0.5

Solution: Note that $\frac{100}{a}$ is an integer if and only if $a=1,2,4,5,10$. Thus, the probability is $1 / 2$.
6. Two distinct non-tangent circles are drawn so that they intersect each other. A third circle, distinct from the previous two, is drawn. Let P be the number of points that are on at least 2 circles. How many possible values of P are there?
Answer: 5
Solution: The first two circles intersect 2 times by assumption. The third circle can intersect each of the first two 0,1 , or 2 times. Thus we can get $2,3,4,5$, or 6 intersection points, giving 5 possibilities.
7. Let x, y, z be nonzero real numbers such that $x+y+z=x y z$. Compute

$$
\frac{1+y z}{y z}+\frac{1+x z}{x z}+\frac{1+x y}{x y} .
$$

Answer: 4

Solution: Dividing the given equation by $x y z$ gives $\frac{1}{y z}+\frac{1}{x z}+\frac{1}{x y}=1$. Thus

$$
\frac{1+y z}{y z}+\frac{1+x z}{x z}+\frac{1+x y}{x y}=\frac{1}{y z}+\frac{1}{x z}+\frac{1}{x y}+3=4 .
$$

Note that $x=1, y=2$, and $z=3$ is one such solution.
8. How many positive integers less than 10^{6} are simultaneously perfect squares, cubes, and fourth powers?

Answer: 3
Solution: A positive integer is simultaneously a perfect square, cube, and fourth power if and only if it is a perfect 12 th power. The number of positive perfect 12 th powers less than 10^{6} is the same as the number of positive integers less than $\sqrt[12]{10^{6}}=\sqrt{10}$. Since $3^{2}=9<10<16=4^{2}$, there are 3 such integers.
9. Let C_{1} and C_{2} be two circles centered at point O of radii 1 and 2 , respectively. Let A be a point on C_{2}. We draw the two lines tangent to C_{1} that pass through A, and label their other intersections with C_{2} as B and C. Let x be the length of minor arc $B C$, as shown. Compute x.

Answer: $\frac{4 \pi}{3}$
Solution: Let X, Y denote the points of tangency of $A B, A C$ with C_{1} respectively. Since $O X=1$ and $O A=2, O X A$ is a 30-60-90 right triangle, $\angle B A C=\angle X A Y=2 \angle X A O=60^{\circ}$. Thus $\angle B O C=120^{\circ}$, so the length of the minor arc $B C$ is

$$
\frac{2 \pi(2)}{3}=\frac{4 \pi}{3}
$$

10. A circle of area π is inscribed in an equilateral triangle. Find the area of the triangle.

Answer: $3 \sqrt{3}$
Solution: The inscribed circle has area π and therefore radius 1 . The incenter forms a 30-60-90 triangle with a vertex and midpoint of an adjacent side with legs 1 and $\sqrt{3}$. The equilateral triangle is made up of 6 of these right triangles, giving an area of $6 \cdot \frac{\sqrt{3}}{2}=3 \sqrt{3}$.
11. Julie runs a 2 mile route every morning. She notices that if she jogs the route 2 miles per hour faster than normal, then she will finish the route 5 minutes faster. How fast (in miles per hour) does she normally jog?
Answer: 6

Solution: Let t be the amount of time it normally takes Julie to jog her route. Then we have

$$
\frac{2}{t}+2=\frac{2}{t-\frac{5}{60}}
$$

Multiplying through by $\frac{1}{2} t\left(t-\frac{5}{60}\right)$ gives

$$
\begin{aligned}
t-\frac{1}{12}+t\left(t-\frac{1}{12}\right) & =t \\
t^{2}-\frac{1}{12} t-\frac{1}{12} & =0 \\
\left(t-\frac{1}{3}\right)\left(t+\frac{1}{4}\right) & =0
\end{aligned}
$$

Since t must be positive, we have $t=\frac{1}{3}$ so that $\frac{2}{t}=6$ miles per hour.
12. Let $A B C D$ be a square of side length 10 . Let $E F G H$ be a square of side length 15 such that E is the center of $A B C D, E F$ intersects $B C$ at X, and $E H$ intersects $C D$ at Y (shown below). If $B X=7$, what is the area of quadrilateral $E X C Y$?

Answer: 25

Solution: Extending lines $E X$ and $E Y$ divides the square into four quadrilaterals. Rotating the square 90° about E sends the lines $E X$ and $E Y$ to each other (since $\angle X E Y$ is a right angle), and therefore preserves the four quadrilaterals. It follows that the quadrilaterals are all congruent. Thus the area of each quadrilateral (including $E X C Y$) is $\frac{100}{4}=25$. (Note that this solution does not use the fact that $B X=7$.)
13. How many solutions are there to the system of equations

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
(a+1)^{2}+(b+1)^{2} & =(c+1)^{2}
\end{aligned}
$$

if a, b, and c are positive integers?
Answer: 0
Solution: Subtracting the first equation from the second gives

$$
2 a+2 b+2-2 c=1
$$

Since a, b, and c are integers, the left-hand side is even. But the right-hand side is 1 , which is odd, so no such integers a, b, c can exist. Hence there are 0 solutions.
14. A square of side length s is inscribed in a semicircle of radius r as shown. Compute $\frac{s}{r}$.

Answer: $\frac{2}{\sqrt{5}}$ OR $\frac{2 \sqrt{5}}{5}$
Solution: Assume without a loss of generality that the radius of the semicircle is 1 , so $\frac{s}{r}=s$. Let $A B C D$ denote the square so that segment $A B$ lies on the semicircle. Let O denote the center of the semicircle. By symmetry, the midpoint of $A B$ is the center of the semicircle. If $A B=s$, then $O B=\frac{s}{2}, B C=s$, and $O C=1$ (because $O C$ is a radius of the circle). By the Pythagorean theorem, we have $1=s^{2}+\frac{s^{2}}{4}$. Hence $s=2 / \sqrt{5}$.
15. S is a collection of integers n with $1 \leq n \leq 50$ so that each integer in S is composite and relatively prime to every other integer in S. What is the largest possible number of integers in S ?

Answer: 4
Solution: Taking $S=\{4,9,25,49\}$, we see that $|S|=4$ is possible. We will show that $|S|=4$ is also maximal. Indeed, note that if $|S| \geq 5$, then there must be at least 5 primes dividing the elements of S, forcing one such prime factor to be at least 11 . As $11 \cdot 5>50$, the element in S divisible by 11 must also be divisible by 2 or 3 . But then since $|S| \geq 5$ and since one of the elements in S is divisible by two distinct primes, there are 6 distinct prime factors among the elements of S. Hence some element of S is divisible by a prime at least 13 , and as before this implies that this element is also divisible by 2 or 3 . Again, this implies that there must be 7 primes dividing the elements of S, so that some prime at least 17 divides an element. This element must again be divisible by 2 or 3 . This gives a contradiction as we now have 3 elements that are divisible by 2 or 3 , so that 2 of these elements must share a factor. Thus, the maximum possible value of $|S|$ is 4 .
16. Let $A B C D$ be a regular tetrahedron and let W, X, Y, Z denote the centers of faces $A B C$, $B C D, C D A$, and $D A B$, respectively. What is the ratio of the volumes of tetrahedrons $W X Y Z$ and $W A Y Z$? Express your answer as a decimal or a fraction in lowest terms.

Answer: $\frac{1}{2}$ OR 0.5

Solution: Note that the two tetrahedra share the base $W Y Z$, so the desired ratio is just the ratio of the heights of the two tetrahedra. Let M denote the midpoint of $B C$ and N the center of triangle $W Y Z$. Since W is the center of $A B C, \frac{A W}{W M}=2$, so using the similarity of triangles $A W N$ and $A M X$, we see that the height of $W A Y Z$ is twice the height of $W X Y Z$. Hence the ratio of the volumes of tetrahedra $W X Y Z$ and $W A Y Z$ is $1 / 2$.
17. Consider a random permutation $\left(s_{1}, s_{2}, \ldots, s_{8}\right)$ of $(1,1,1,1,-1,-1,-1,-1)$. Let S be the largest of the numbers

$$
s_{1}, \quad s_{1}+s_{2}, \quad s_{1}+s_{2}+s_{3}, \ldots, \quad s_{1}+s_{2}+\cdots+s_{8}
$$

What is the probability that S is exactly 3 ? Express your answer as a decimal or a fraction in lowest terms.

Answer: $\frac{1}{10}$ OR 0.1

Solution: We claim that if $S=3$ then exactly one of $s_{1}, s_{2}, s_{3}, s_{4}$ is -1 . Indeed, if none are -1 then $S \geq s_{1}+\cdots+s_{4}=4$, and if two of them are -1 then $S \leq 4-2=2$. Moreover, by the same reasoning, if $S=3$ and one of s_{1}, s_{2}, s_{3} is -1 then $s_{5}=1$. Thus, a permutation with $S=3$ must start in one of the following ways:

$$
\begin{aligned}
& 1,1,1,-1, \ldots \\
& 1,1,-1,1,1, \ldots \\
& 1,-1,1,1,1, \ldots \\
& -1,1,1,1,1, \ldots
\end{aligned}
$$

It is also clear that any permutation that starts in one of these ways has $S=3$.
In the first case there are 4 ways to end the permutation since there are four places for the last +1 . Each of the other three cases can only end in one way since all of the +1 's have been used. As there are $\binom{8}{4}=70$ total permutations, the probability that $S=3$ is

$$
\frac{4+1+1+1}{70}=\frac{1}{10}
$$

18. A positive integer is called almost-kinda-semi-prime if it has a prime number of positive integer divisors. Given that there are 168 primes less than 1000, how many almost-kinda-semi-prime numbers are there less than 1000 ?

Answer: 184

Solution: For a number to have p divisors for a prime p, it must be of the form q^{p-1} where q is prime. When $p=2$, we thus get one almost-kinda-semi-prime for each prime less than 1000 , giving 168 . For $p=3$ we get one for every prime q with $q^{2}<1000$. As $31^{2}=961<1000<32^{2}$, and there are 11 primes not exceding 31, this gives 11 more almost-kinda-semi-primes. Proceding in this way, we get 3 more when $p=5$ and 2 more when $p=7$. As $2^{10}>1000$, we get no more for $p \geq 11$. So in total we have found $168+11+3+2=184$ almost-kinda-semi-primes.
19. Let $A B C D$ be a unit square and let X, Y, Z be points on sides $A B, B C, C D$, respectively, such that $A X=B Y=C Z$. If the area of triangle $X Y Z$ is $\frac{1}{3}$, what is the maximum value of the ratio $X B / A X$?

Answer: $\frac{1+\sqrt{3}}{-1+\sqrt{3}}$ OR $2+\sqrt{3}$
Solution: Let $\min (A X, X B)=r$. Since $A X=C Z, B X=D Z$, and $B C=A D$, trapezoids $X A D Z$ and $Z C B X$ have equal bases and equal heights, so they have equal area. Now, we can write
$1=\operatorname{area}(A B C D)=\operatorname{area}(A X Z D)+\operatorname{area}(X Y Z)+\operatorname{area}(X B Y)+\operatorname{area}(Y C Z)=\frac{1}{2}+\frac{1}{3}+r(1-r)$,
and solving for r yields $r=\frac{1}{2}-\frac{\sqrt{3}}{6}$. Hence

$$
\frac{A X}{X B}=\frac{1-r}{r}=\frac{\frac{1}{2}+\frac{\sqrt{3}}{6}}{\frac{1}{2}-\frac{\sqrt{3}}{6}}=2+\sqrt{3}
$$

20. Positive integers $a \leq b \leq c$ have the property that each of $a+b, b+c$, and $c+a$ are prime. If $a+b+c$ has exactly 4 positive divisors, find the fourth smallest possible value of the product $c(c+b)(c+b+a)$.
Answer: 50616
Solution: We claim that $(a, b, c)=(1,1, p-1)$ for some prime p. To see this, note that $a+b$, $b+c$ and $c+a$ are three primes such that their sum

$$
(a+b)+(b+c)+(c+a)=2(a+b+c)
$$

is even. Hence either one of these primes is even or all three of them are even. If all three are even then $a=b=c=1$ (since 2 is the only even prime), giving $a+b+c=3$, which does not have 4 positive divisors. Hence $a+b=2$ and the other two primes are odd, giving $a=b=1$, and $c=p-1$ for some prime p.
Since $a+b+c=p+1$, we need to find primes p such that $p+1$ has exactly 4 divisors. This occurs in two cases: (1) $p+1$ is the cube of a prime, or $(2) p+1$ is a product of two distinct primes.
Case 1: If $p+1=q^{3}$ for a prime q, then we have

$$
p=q^{3}-1=(q-1)\left(q^{2}+q+1\right)
$$

As p is prime, we have $q=2$, so that $p=7$.
Case 2: Suppose $p+1=q r$ is a product of distinct primes (note that this implies $p \neq 2$). Then $p+1$ is even, and $\frac{p+1}{2}$ is a prime. The first few such p are given by $p=5,13,37, \ldots$
We want the fourth smallest value of $c(c+b)(c+b+a)=(p-1) p(p+1)$. As the fourth smallest possible value of p is 37 , we get an answer of $36 \cdot 37 \cdot 38=50616$.

